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PREFACE

Kurt Godel's astonishing discovery and proof, published
in 1931, that even in elementary parts of arithmetic there
exist propositions which cannot be proved or disproved
within the system, is one of the most important contribu-
tions to logic since Aristotle. Any formal logical system
which disposes of sufficient means to compass the addition
and multiplication of positive integers and zero is subject
to this limitation, so that one must consider this kind of
incompleteness an mherent characteristic of formal mathe-
matics as a whole, which was before this customarily con-
sidered the unequivocal intellectual discipline par excellence.

No Enghish translation 6f Gddel’s paper, which occupied
twenty-five pages of the Monatshefte fiir Mathematik und
Physik, has been generally available, and even the original
German text is not everywhere easily accessible. The
argument, which used a notation adapted from that of
‘Whitehead and Russell’s Principia Mathematica, is a closely
reasoned one and the present translation—besides being a
long overdue act of piety—should make it more easily
intelligible and much more widely read. In the former
respect the reader will be greatly aided by the Introduction
contributed by the Knightbridge Professor of Moral
Philosophy in the University of Cambridge; for this is an
excellent work of scholarship in its own right, not only
pointing out the significance of Godel’s work, but illumin-
ating it by a paraphrase of the major part of the whole
great argument.

1 proposed publishing a translation after a discussion
meeting on “Gaodel’s Theorem and its bearing on the philo-
sophy of science™, held in 1959 by the Edinburgh Philosophy

vii
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of Science Group. I wish to thank this society for providing
the stimulus, the publishers for their ready co-operation on
the proposal, and Professor Braithwaite not only for the
Introduction but also for meticulous assistance in transla-
tion and proof-reading of a typographically intricate text.
It may be noted here that the pagination of the original
article is shown in the margins of the translation, while the
footnotes retain their original numbers.

B. MELTZER
University of Edinburgh
January, 1962



INTRODUCTION
by
R. B. BRAITHWAITE

Every system of arithmetic contains arithmetical proposi-
tions, by which is meant propositions concerned solely with
relations between whole numbers, which can neither be
proved nor be disproved within the system. This epoch-
making discovery by Kurt Godel, a young Austrian mathe-
matician, was announced by him to the Vienna Academy of
Sciences in 1930 and was published, with a detailed proof,
in a paper in the Monatshefte fiir Mathematik und Physik
Volume 38 pp. 173-198 (Leipzig: 1931). This paper, en-
titled “Uber formal unentscheidbare Sdtze der Principia
Mathematica und verwandter Systeme I (‘““On formally
undecidable propositions of Principia Mathematica and
related systems 1), is translated in this book. Gdodel
intended to write a second part to the paper but this has
never been published.

Godel's Theorem, as a simple corollary of Proposition VI
(p. 57) is frequently called, proves that there are arithmetical
propositions which are undecidable (i.e. neither provable
nor disprovable) within their arithmetical system, and the
proof proceeds by actually specifying such a proposition,
namely the proposition g expressed by the formula to which
“17 Gen r” refers (p. 58). g is an arithmetical proposition;
but the proposition that g is undecidable within the system
is not an arithmetical proposition, since it is concerned with
provability within an arithmetical system, and this is a meta-
arithmetical and not an arithmetical notion. Gédel’s
Theorem is thus a result which belongs not to mathematics
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2 INTRODUCTION

but to metamathematics, the name given by Hilbert to the
study of rigorous proof in mathematics and symbolic logic.

METAMATHEMATICS. Goddel’s paper presupposes some
knowledge of the state of metamathematics in 1930, which
therefore I shall briefly explain. Following on the work of
Frege and Peano, Whitehead and Russell’s Principia
Mathematica (1910-13) had exhibited the fundamental parts
of mathematics, including arithmetic, as a deductive system
starting from a limited number of axioms, in which each
theorem is shown to follow logically from the axioms and
theorems which precede it according to a limited number of
rules of inference. And other mathematicians had con-
structed other deductive systems which included arithmetic
(see p. 37, n. 3). In order to show that in a deductive
system every theorem follows from the axioms according to
the rules of inference it is necessary to consider the formulae
which are used to express the axioms and theorems of the
system, and to represent the rules of inference by rules
(Godel calls them “mechanical” rules, p. 37) according to
which from one or more formulae another formula may be
obtained by a manipulation of symbols. Such a representa-
tion of a deductive system will consist of a sequence of
formulae (a calculus) in which the initial formulae express
the axioms of the deductive system and each of the other
formulae, which express the theorems, are obtained from
the initial formulae by a chain of symbolic manipulations.
The chain of symbolic manipulations in the calculus corres-
ponds to and represents the chain of deductions in the
deductive system.

But this correspondence between calculus and deductive
system may be viewed in reverse, and by looking at it
the other way round Hilbert originated metamathematics.
Here a calculus is constructed, independently of any inter-
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pretation of it, as a sequence of formulae which starts with
a few initial formulae and in which every other formula is
obtained from preceding formulae by symbolic manipula-
tions. The calculus can then be interpreted as representing
a deductive system if the initial formulae can be interpreted
as expressing the axioms of the system and if the rules of
symbolic manipulation can be interpreted as representing
the logical rules of inference of the system. If this can be
done, a proof that a formula (other than one of the initial
formulae) occurs in the sequence of formulae of the calculus
yields a proof that the proposition which is the interpreta-
tion of this formula is a theorem of the deductive system,
i.e. can be deduced from the axioms of the system by the
system’s rules of inference. Metamathematicians in the
1920’s established many important results about deductive
systems by converting proofs of what formulae can be ob-
tained by symbolic manipulations within a calculus into
proofs of what theorems can be proved within a deductive
system which could be represented by the calculus. Fre-
quently consideration of symbolic manipulations provided
a “decision procedure™ by which whole classes of theorems
could actually be proved. Thus Presburger in 1930 pub-
lished a decision procedure applicable to every proposition
of a mutilated system of arithmetic which uses the operation
of addition but not that of multiplication; he proved that
every one of its propositions is decidable, i.e. either provable
or disprovable, within this system.

Godel's paper established the opposite of this for an
arithmetical system which uses multiplication as well as
addition—*"the theory of ordinary whole numbers” (p. 38).
And this is the piece of mathematics which is oldest in the
history of civilization and which is of such practical impor-
tance that we make all our children learn a great deal of it
at an early age. Godel was the first to prove any unprov-
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ability theorem for arithmetic, and his way of proof was
subtler and deeper than the metamathematical methods
previously employed. Either of these facts would have
ranked this paper high in the development of metamathe-
matics. But it was the fact that it was a proposition of
whole-number arithmetic which he showed to be undecid-
able that created such a scandal.

GODEL’s ‘FORMAL System’ P. In order rigorously to
prove the undecidability of some arithmetical propositions
it is necessary to be precise about the exact deductive system
of arithmetic which is being considered. As is indicated in
the title of his paper, Godel takes for his arithmetical
deductive system that part of the system of Principia
Mathematica required to establish the theorems of whole-
number arithmetic. Since his proof is metamathematical
he is concerned with a calculus representing his arithmetical
system: what he proves in Proposition VI (p. 57) is a result
about the calculus and not about what the calculus repre-
sents, for what it directly establishes is that neither of two
particular formulae—the first referred to by “17 Gen r”,
the second by “Neg (17 Gen r)” (p. 59)—can be obtained
from the initial formulae of the calculus by the rules of
symbolic manipulation of the calculus. If the calculus is
interpreted (as it can be interpreted) so that it represents the
arithmetical part of the Principia Mathematica deductive
system, with the second formula expressing the contradic-
tory of the arithmetical proposition expressed by the first
formula, then the theorem about the deductive system which
corresponds to the calculus-theorem states that the pro-
position g to which “17 Gen /™ refers is such that neither it
nor its contradictory is provable within the system. Hence
within the system g is neither provable nor disprovable.
An unprovability theorem for the arithmetical deductive
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system which Gddel is considering is a simple corollary of
Proposition VI about his calculus. Thus the paper is con-
cerned with what formulae can (or, rather, cannot) be
obtained within a particular calculus, although of course
the calculus would have little general interest if it could not
be interpreted as representing a deductive system of whole-
number arithmetic.

Godel’s attention solely to his calculus will explain
some features of his terminology which may puzzle philo-
sophical logicians. He transfers many epithets which are
applied more naturally to deductive systems than to calculi,
using them to refer to features of his formal system (his term
for what I have called his calculus). He employs formula in
the way in which I have used it so that a formula is a “finite
series of basic signs”, but he goes on to say that “it is easy to
state precisely just which series of basic signs are meaning-
ful formulae and which are not” (p. 38). “Meaningful” is a
misnomer, since it is the formal system that is being con-
sidered and not an interpretation of it. When he specifies
on p. 43 precisely which series of basic signs are to be
well-formed formulae (to use the modern term)—Gddel calls
them formulae without a qualifying adjective—he makes
no reference to meaning. A formula for him is a series of
signs which either is an elementary formula (a concatenation
of signs of specified sorts) or is built up out of elementary
formulae together with some or all of three specified signs
by the use, or repeated use, of three specified rules of con-
struction. When Gddel speaks, in connexion with a formal
system, of ‘rules of inference’, he is referring to the rules
according to which one formula can be obtained from other
formulae within the formal system. In his system he uses
two ‘rules of inference’, which he specifies by giving one
condition for a formula being an ‘immediate consequence’
of two formulae and one condition for its being an ‘im-
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mediate consequence’ of one formula (p. 45). A ‘proof-
schema’, for him, is a series of formulae in which each
formula (except the initial formulae, which he calls ‘axioms’)
is an ‘immediate consequence’ of one or of two of the for-
mulae preceding it in the series. A ‘proof-schema’ is a
‘proof” of the last formula in it; and a formula is ‘provable’
if there is a ‘proof” of it. Godel gives his precise definition
of the class of ‘provable’ formulae in language familiar to
mathematicians as “‘the smallest class of formulae which
contains the axioms and is closed with respect to the relation
‘immediate consequence of” ™ (p. 45), i.e. the smalilest class
which contains the axioms and which contains the ‘immedi-
ate consequence’ of every formula, and of every pair of
formulae, contained in the class. For the benefit of philo-
sophical logicians | shall continue the practice followed in
this paragraph of putting single quotation marks round
terms which without quotation marks refer to features of
deductive systems, when I am using them, in Godel’s
manner, with reference to a formal system, i.e. to a calculus.

Godel gives an “exact description” of his formal system
P on pp. 42ff. by specifying (1) its basic signs, (2) its for-
mulae (i.e. its well-formed formulae), (3) its ‘axioms’
(initial formulae), (4) the relation of being an ‘immediate
consequence’ of. He says that P is “essentially the system
obtained by superimposing on the Peano axioms [for whole-
number arithmetic] the logic of PM [Principia Mathematica]”
(p. 41). Since the Peano axioms are ‘provable’ (and indeed
‘proved’) in the calculus of PM, Godel’s system P is virtually
that part of the calculus of PM required to lead up to whole-
number arithmetic: as Godel says, “‘the addition of the
Peano axioms, like all the other changes made in the system
PM, serves only to simplify the proof and can in principle
be dispensed with” (p. 41, n. 16). Gdodel states his rules of
symbolic construction and manipulation more precisely
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than do Whitehead and Russell. His only noteworthy
divergence from them is that, instead of employing a limited
number of ‘axioms’, he follows the example of von Neumann
in using, besides three of Peano’s ‘axioms’, eight ‘axiom-
schemata’ each covering an unlimited number of cases
(p. 44): by doing this he is able to manage with only two
‘rules of inference’ (see p. 45, n. 24). Godel specifies the
formal system P in the way he does in order to simplify his
proof of the undecidability of some of the formulae of P.
Since, as he explains, this undecidability is not due to ““the
special nature of the systems set up, but holds for a very
extensive class of formal systems” (p. 38), the exact form
he has chosen for P is of no intrinsic importance. What is
essential is that P should be an appropriate subject for the
exhibition of a method of metamathematical proof which
Godel invented, a method so powerful that it can establish
an ‘unprovability’ result for every formal system capable of
representing arithmetic.

THE METHOD OF “ARITHMETIZATION”. Godel’s novel
metamathematical method is that of attaching numbers to
the signs, to the series of signs (formulae) and to the series
of series of signs (‘proof-schemata’) which occur in his
formal system. Just as Descartes invented co-ordinate
geometry by assigning number-pairs to the points of plane
Euclidean geometry, so Godel invented what might be
called co-ordinate metamathematics by assigning numbers
to the basic signs, series of basic signs, series of series of
basic signs (all of which 1 shall for convenience lump to-
gether under the generic term string) which form an essential
part of the subject-matter of metamathematics. Descartes
proved geometrical theorems about points by proving
algebraic theorems about numbers; Godel established meta-
mathematical results about the strings of his formal system
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by considering numbers co-ordinated with the strings. The
difference between the co-ordinate systems of co-ordinate
geometry and of co-ordinate metamathematics is that the
former uses number-pairs for two-dimensional geometry,
number-triads for three-dimensional geometry, and so on,
and the numbers used are not confined to integers, whereas
co-ordinate metamathematics is one-dimensional, using only
single numbers, and these (in Godel’s paper) are restricted
to being “natural numbers™, i.e. 0, 1, 2, 3, etc.

Godel explains what is now called his “‘arithmetization™
method on p. 45. What he does is to provide a co-ordinating
rule according to which a different number (which 1 shall
call a Gédel number) is assigned to each string in his formal
system. The rule also works in reverse: of every number
0, 1, 2, 3, etc. the rule determines whether the number is the
Godel number of a basic sign, or of a series of basic signs,
or of a series of series of basic signs, or is not a Godel
number at all (i.e. there is no string of which it is the Godel
number); and if the number is a Gddel number, the rule
specifies uniquely which string it is of which it is the Godel
number. In his account Godel speaks of his rule as estab-
lishing a “one-to-one correspondence™. Not all numbers
are Godel numbers: the one-to-one correspondence estab-
lished by the rule is between the members of a specific
sub-class of the class of natural numbers, namely those
which are Godel numbers, and the members of the class of
strings, which class is the union (logical sum) of three
exclusive classes—the class of basic signs, the class of series
of these signs, the class of series of series of these signs. The
Godel number of a series of series of signs is not explicitly
mentioned in Godel’s account of his method of arithmetiza-
tion, but he uses the notion in the definitions (from 22
onwards, pp. 52ff.) which form an essential preliminary to
the proof of his Theorem. This Godel number is the
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number constructed out of the Gédel numbers of the ele-
ments of the series of series of signs in exactly the same way
as the Godel number of a series of signs is constructed out
of the Gddel numbers of the signs which are the elements of
this series of signs (p. 45). Thus the Godel number of a
series of k elements, whether these elements are signs or are
series of signs, is constructed out of the elements’ Godel
numbers 7y, n,, ...n, as the number 2" .3" ... p/* a
product whose prime factors are the first k& prime numbers
(1 not being counted as a prime number) with the 1st, 2nd,
... k-th prime number occurring respectively n,, n,, . . . n,
times in the product. The one-to-one correspondence be-
tween Godel numbers defined in this way and the strings
of which they are Godel numbers is a consequence of the
“fundamental theorem of arithmetic”, namely that every
natural number greater than 1 which is not itself a prime
has a unique resolution into prime factors.

Godel’s rule of arithmetization ensures that to every class
of strings there corresponds a unique class of Godel num-
bers, and vice versa. And that to any relation R between
strings there corresponds a unique relation R’ between
Godel numbers, and vice versa: i.e. the n-adic relation R’
holds between n Godel numbers if and only if the n-adic
relation R holds between the » strings. For example, the
metamathematical statement that the series s of formulae is
a ‘proof’ of the formula fis true if and only if a certain
arithmetical relation holds between the Godel numbers of
s and of f which corresponds to the relation: being a ‘proof’
of. Godel uses the same language to refer to the arith-
metical properties of, and relation between, Godel numbers
as he uses to refer to the corresponding properties of, and
relations between, strings (see p. 39, n. 9), printing the
terms in italics when they refer to arithmetical concepts
applicable to Godel numbers (p. 46). In a sequence of
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definitions 6-46 (pp. 50-55) he defines, step by step, a
sequence of arithmetical concepts which correspond, accord-
ing to his rule of arithmetization, to the metamathematical
concepts expressed by the same words. [Definitions 1-5
define the ancillary arithmetical concepts (being the n-th
prime number, etc.) used in his method of arithmetization.]
As examples, definition 8 (p. 50) defines the arithmetical
operation % upon two numbers x and y in such a way that
the number x % p which is the result of performing this
operation is the Godel number of the string obtained by
taking the string whose Gddel number is x and placing the
string whose Godel number is y immediately after it. And
definition 45 (p. 55) defines the arithmetical relation B
between x and y so that the proposition x By is the same
as the conjunction of the proposition that x is the Godel
number of a series of series of signs forming a ‘proof-
schema’ with the proposition that the series of signs whose
Godel number is y is the last series of signs in this ‘proof-
schema’, i.e. this ‘proof-schema’ is a ‘proof’ of the last
formula in it. For the sake of clarity I shall not follow
Godel’s abbreviating practice of using italicized words and
phrases to refer to arithmetical concepts applicable to
Gaodel numbers, and shall use italics only in the ordinary
way for emphasis. For example, while Godel paraphrases
the x By of definition 45 (p. 55) as: x is a proof of the
formula y, 1 paraphrase it as: x is the Godel number of a
‘proof” of the formula whose Godel number is y.

The interpreted symbolism used in these definitions, as in
all Godel’s metamathematical statements (see p. 47, n. 29),
is that of Hilbert and Ackermann’s Grundziige der theoreti-
schen Logik (1928: English translation, 1950). The only
deviations from the symbolism of Principia Mathematica
are: “p” to stand for Not p, “p & ¢” for Both p and ¢,
“p — ¢ for Not both p and Not g (the “p > ¢” of PM),
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“p ~ ¢ for Either both p and ¢ or both Not p and Not ¢
(the “p = ¢” of PM), and “(Ex)” as the existential quanti-
fier in place of the “(dx)” of PM. Godel uses “="" as an
abbreviation for ““means the same as” in his definitions.

Except for these purely logical concepts, all the concepts
involved in Godel’s definitions 1-46 (pp. 49-55), and also
those in (5), (6), (6.1), (8.1) of pp. 57f., are arithmetical con-
cepts (properties, relations, operations) which apply to
natural numbers, i.e. the substitution values for the variables
“xV,Cyr, “z7, “n”, ete. occurring in the definitions are
“07, “17, “2”,... And the logical concepts are restricted
so that they apply to only a finite number of entities. When-
ever a universal or existential quantifier occurs in any of
the definitions 1-45, a clause is inserted within the quantifi-
cation which ensures that the quantification is only over a
finite number of values. For example, the first definition
(p. 49) defines “x is divisible by y” as There is a z less than
or equal to x which is such that x = y.z, the phrase which
I have italicized being inserted so as to restrict the quanti-
fication to numbers not greater than x. This makes the
definiens equivalent to: x = p.0 or x =y.l or... or
x = y.x, a truth-function of a finite number (x+1) of
equalities. This restriction upon the quantifiers (except in
definition 46) secures that all the arithmetical concepts
employed (except Bew) are recursive in a sense of this word
which Godel defines and discusses in an excursus from his
main argument (pp. 46-49).

RECURSIVENESS. The notion of recursiveness has played
a central part in metamathematics since Godel’s work on it,
but little more will be said about it here than is necessary
for an understanding of Godel’s proof of his Theorem.

The method of recursive definition is an extension of the
method of definition by “mathematical induction™ by which
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the natural numbers are, step by step, defined. Starting
with 0, 1 is defined as the immediate successor of 0, 2 as the
immediate successor of 1, and so on. A recursive definition
(a “primitive recursive definition”, as it is now called) is the
specification of each number in a sequence of numbers by
means of a specification of the first number and of a rule
which specifies the (k+ 1)-th number in terms of the k-th
number and of k itself. [This is a paraphrase of Godel’s
definition of a recursively defined arithmetical function,
where this function is of only one numerical variable: see
(2) of p. 46.] An arithmetical function is recursive if it is the
last term in a finite sequence of functions in which each
function is recursively defined by a rule involving two
functions preceding it in the sequence (or is the successor
function or a constant or obtained by substitution from a
preceding function); and the recursiveness of other arith-
metical concepts is defined by means of the notion of
recursive function. The essential feature of a recursive
concept—a dyadic relation R, for example—is that whether
or not R holds between m and n, i.e. whether R (m, n) is
true or false, can be decided by a step-by-step procedure
working upwards from R (0, 0) with the use of a limited
number of recursive definitions.

The importance of recursiveness for metamathematics in
general lies in the fact that recursive definition enables every
number in a recursively defined infinite sequence to be con-
structed according to a rule, so that a remark about the
infinite sequence can be construed as a remark about the
rule of construction and not as a remark about a given
infinite totality. For this reason the use of only such mathe-
matical concepts as are recursive is favoured by mathe-
matical thinkers of both the finitist and intuitionist schools
of metamathematics, and is accepted (although with exten-
sions made by Godel and others to the notion of recursive-
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ness in this paper) by present-day constructivists who decline
to talk about any mathematical entities that cannot be
recursively constructed.

For the proof of Gdédel’s ‘Unprovability’ Theorem the
importance of recursiveness lies in the fact (Proposition V,
p. 55) that every statement of a recursive relationship hold-
ing between given numbers x,, x,, . . . X, is expressible by a
formula f of the formal system P which is ‘provable’ within
P if the statement is true and ‘disprovable’ within P (i.e. the
‘negation’ of f, written as Neg f, is ‘provable’ within P) if
the statement is false. Godel only outlines a proof of this
proposition, since it “offers no difficulties of principle and
is somewhat involved” (p. 56); so I will expand what he
says in his footnote (p. 56, n. 39). Since the relation R in
question is recursive, then if R (xy, x,,...x,) is true,
R (xy, X3, ...x,) can be proved in a deductive system for
arithmetic by constructing a finite sequence of propositions
starting with the axioms and ending with R (xy, x5, . . . X,);
and if R (xy, x5, ... x,) is false, Not R (x,, x5, ...x,) can
similarly be proved. The calculus or formal system P was
designed by Godel to represent this deductive system; so
the finite sequence of propositions wkich constitutes a proof
of R(xy,Xx,,...x,) or of Not R (xy, X5,...x,) will be
expressed in P by a finite series of formulae ending in a
formula £ in the one case and in the formula Neg f in the
other. To express in P the step-by-step definitional pro-
cedure by which the truth or falsity of the recursive relation-
ship is established is to construct either a ‘proof” of for a
‘proof” of Neg 1 f or Neg f will only appear in the formal
system accompanied by a ‘proof-schema’ of which it is the
last formula. So if R(x,, x,,...x,) is true, there is a
‘proof” of f, and fis a ‘provable’ formula (definition 46,
p. 55); and if R (xy, x5, . . . x,) is false, Neg fis a ‘provable’
formula within the system P.
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Define a class-sign as a series of signs which is a formula
and which contains exactly one free variable (which may
occur at several places in the formula) (p. 43). [In Godel’s
system P there is no distinction between a class-sign
and a property-sign, since ‘axiom-schema’ V (p. 44) may
be regarded as expressing the axioms that two properties
(of the same type) which always go together are identical—
“axioms of extensionality”.] A class-sign is recursive if it
can be interpreted as expressing a recursive arithmetical
class, in which case the formula resulting from the substi-
tution for its variable of a number-sign will be ‘provable’ or
‘disprovable’ according as the number represented by the
number-sign in the interpretation of the system is or is not
a member of this recursive class. A recursive relation-sign
is defined similarly (p. 43: see also p. 47, n. 28). Note that
neither a class-sign nor a relation-sign is a basic sign, since
the former contains one and the latter several free variables.

THE ‘UNPROVABILITY’ THEOREM FOR P. “We now
come”, as Godel says (p. 56), “to the object of our exer-
cises”—the proof of the ‘Unprovability’ Theorem. To
prove this he establishes Proposition VI which is more
general than is necessary for proving that there are undecid-
able formulae in the formal system P, since it is concerned
not only with ‘proofs’ within P but also with ‘deductions’
within P from formulae not included among the ‘axioms’ of
P, i.e. with ‘proofs’ within a formal system P’ obtained from
P by adding these formulae as additional ‘axioms’. Godel
requires this subtlety later on in his paper; but it complicates
the proof of Proposition VI, which I shall discuss in the
simplified form in which the class ¢ of added formulae is the
null class (i.e. no formulae are added to the axioms), so that
a ‘c-provable’ formula within P (p. 59) is the same as a
‘provable’ formula within P, and the argument is concerned
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solely with ‘proofs’ within P. Godel’s B, is thus taken as
equivalent to his relation B, and Bew, as equivalent to his
property Bew.

Proposition VI simplified in this way may be stated as
follows: If the formal system P satisfies a certain condition
of ‘consistency’, then there is at least one recursive class-sign
rin P such that neither v Gen r nor Neg (v Gen r) is ‘provable’
within P, where v Gen r is the generalization of r with respect
to its free variable v.

The undecidability of v Gen r within P depends upon P’s
satisfying a certain ‘consistency’ condition. Since this con-
dition is only relevant to the last stage of the proof, and
itself raises important questions, consideration of ‘consis-
tency’ will be deferred until the main part of the proof has
been discussed.

This main part is given in pp. 58f. from (8.1) to (16).
Godel states his argument in terms of Gddel numbers and
of relations between Godel numbers; and when the expres-
sions relation-sign, free variable, class-sign, provable are used
they are italicized to show that they refer to arithmetical
concepts applicable to Godel numbers. Because of the
correspondence between these concepts as applied to Godel
numbers and metamathematical concepts as applied to the
strings which have these Godel numbers, Godel’s whole
argument applies equally well if his symbols are interpreted
as strings and the terms relation-sign, free variable, etc. are
taken in their usual sense. Since Gddel’s argument, though
couched in terms of numbers, is a metamathematical argu-
ment, it may be convenient for philosophical logicians if I
give it wholly in metamathematical terms. This will have
the additional advantage that interpretations of the formulae
can be inserted parenthetically at appropriate places, on the
assumption that the calculus (G6del’s formal system P) is
to be interpreted as representing a deductive system which
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includes propositional and first-order predicate logic—
though, strictly speaking, any actual interpretation is irre-
levant to the argument.

However, a recasting of Godel’s argument in meta-
mathematical terms makes one unimportant modification
necessary. For the part of his argument which establishes
the ‘unprovability’ of Neg (v Gen r) requires at one point
considering a statement about all numbers, whether or not
they are Godel numbers; and this statement cannot be
construed without change as a statement about all strings,
since a number which is not a Godel number does not
correspond to any string. But it is easy to close the gap in
the recasting by considering the numbers which are Godel
numbers as arranged in a sequence of increasing magnitude,
and then using, instead of a Gédel number itself, the number
which gives the place of this Gdel number in the sequence.
To be precise, if n is the (m+1)-th Gédel number in in-
creasing order, call m the G-number of the string of which
n is the Godel number, and use the G-number m wherever
Godel in his argument uses the Godel number n. Then
every natural number 0, 1, 2, etc. will be the G-number of
some string; and there will be a recursive one-to-one corres-
pondence between natural numbers and strings. So arith-
metical statements about all numbers can be construed as
metamathematical statements about all strings. Of course
Godel’s sequence of definitions 6-46 defines arithmetical
concepts which correspond to metamathematical concepts
according to the Godel-number method of arithmetization.
But the purpose of his definitions is to establish that all the
arithmetical concepts concerned (except Bew) are recursive
and so are also all the corresponding metamathematical
concepts. Consequently any proposition about them is
expressible in P by a formula which is ‘provable’ or ‘dis-
provable’ according as the proposition is true or false.
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Having proved this (by Proposition V, p. 55) Godel makes
no further use in his argument for the ‘Unprovability’
Theorem of his particular method of arithmetization. All
that is necessary is that there should be a unique number
assigned to every string. So no harm will result from con-
tinuing the argument using G-numbers instead of the corres-
ponding Godel numbers; and this use of G-numbers I shall
call the ““modified arithmetization™.

To facilitate comparison with Godel's text, 1 shall use
Gaodel’s symbols, except that, as well as single small italic
letters denoting numbers, [ shall in future use the same
letters in bold type to stand for the strings of which these
numbers are G-numbers. Thus x will be the string whose
G-number is x. Godel writes Z(x) for the Gédel number of
the number-sign for the number x in his formal system P
(see definition 17, p. 51). This number-sign is “0” preceded
by x “f”s; e.g. the number-sign for 3 is “fff 0" (see p. 42).
I shall call these number-signs numerals; and shall write
Gx (or, if x is a complex expression, G[x]) for the numeral
for the G-number of x and call Gx the G-numeral of x.
Since every number is a G-number, every numeral is a
G-numeral; and there is a recursive one-to-one corres-
pondence between the members of the class of numerals
“0”, “f0”, “ff0”, etc. and the members of the class of
strings (which, of course, includes the class of numerals as
a sub-class).

A class-sign will be written in the form a(v) and a dyadic
relation-sign in the form b (v, w) with v or v, w, the free
variables (of first type) concerned, mentioned explicitly. [But
the G-numerals of a(v) and of b (v, w) will be abbreviated to
Ga and to Gb.] Since we are concerned with the formal
system P whose “individuals” are natural numbers (p. 42)
the substitution values for v and w will always be numerals,
and thus always G-numerals. The result of substituting Gx
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for v and Gy for w in b (v, w) will be written as b (Gx, Gy).
[Godel uses a typographically less convenient notation for
substitution. In comparing my version with his text it
should be remembered that 17 is the Godel number of v
and 19 that of w.]

The simplified Proposition VI may now be restated as:
If the formal system P satisfies a certain condition of ‘con-
sistency’, then there is at least one recursive class-sign x(v) in
P such that neither v Gen r(v) nor Neg [v Gen r(v)] is ‘prov-
able’ within P.

We can now follow the principal steps in the argument
of pp. 57-59 from (8.1) onwards.

Define Q' (x, y(u)) as Not [x By (Gy)], i.e. X is not a
‘proof’ of the formula obtained by substituting for the
variable in the class-sign y(u) the G-numeral Gy for the
class-sign itself.

Let Q (x, y) be the relationship between the G-numbers
of x and of y which is equivalent to Q' (x, y (u)) by the
modified arithmetization. Q (x, y) is recursive; and so it
follows from Proposition V that there is a recursive relation-
sign q (v, w) which is such that

[ Q(x,») — [q(Gx, Gy)] is ‘provable’;

|Not Q (v, y) - [Neg q (Gx, Gy)] is ‘provable’.
But Q' (x,y (u)) is equivalent to Q (x, »); and thus

Q' (%, y (w)) - [q(Gx, Gy)] is ‘provable’;
Not Q' (x, y (u)) — [Neg q (Gx, Gy)] is ‘provable’.

The relation-sign q (v, w) may therefore be regarded as a
formula expressing the relation which x has to y(u) when
x is not a ‘proof” of y(Gy).

Consider the ‘generalization’ of the relation-sign q (v, w)

with respect to the free variable v, yielding the formula
v Gen q (v, w). This has one free variable, namely w, and so
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is a class-sign. Call it p(w). It may be regarded as denoting
the class of which a class-sign y(u) is a member if and only if
everything is not a ‘proof” of y(Gy), i.e. if and only if y(Gy)
is ‘unprovable’.

Next consider the substitution in the same relation-sign
q (v, w) of Gp for the free variable w, yielding the formula
q (v, Gp). This also has one free variable, v, and so is also
a class-sign. Call it r(v). It may be regarded as denoting
the class of strings which are not ‘proofs’ of p(Gp). Since
it may also be regarded, according to the modified arith-
metization, as denoting the class of the G-numbers of these
strings, which is a recursive arithmetical class, r(v) is a
recursive class-sign.

Now consider the ‘generalization’ of this class-sign r(v)
i.e. of q (v, Gp), with respect to its free variable v, which
yields the formula v Gen r(v). This has no free variable,
and may be regarded as expressing the proposition that
everything is not a ‘proof’ of p(Gp), i.e. that p(Gp) is
‘unprovable’.

But, and here is the crux of the argument, v Gen r(v) is
the same as p(Gp). For we arrived at the former by first
substituting Gp for w in q(v, w), which yielded r(v),
and then ‘generalizing’ with respect to v, which yielded
v Genr(v). But, since the substitution and the ‘generalization’
had reference to different free variables, the two operations
yield the same final result if performed in the reverse order,
i.e. by first ‘generalizing’ q (v, w) with respect to v, which
yields p(w), and then substituting Gp for w in p(w), which
yields p(Gp). If either of the formulae v Gen r(v) or p(Gp)
be expanded to get rid of the abbreviations r and p, we
get one and the same formula

v Gen q (v, G [v Gen q (v, w)]).

This formula, and of course each of the abbreviations of



20 INTRODUCTION

it, may be regarded as expressing the proposition that the
formula itself is ‘unprovable’, i.e. the formula expresses its
own ‘unprovability’.

The formula of Gédel’s which I have sometimes quoted,
namely “17 Gen r”, is the modified arithmetization of my
metamathematical “v Gen r(v)”, but with 17, the Godel
number of my variable v, used instead of the G-number
of v. Since it is immaterial in which way the metamathe-
matical formula is written, I shall in the next few pages use
the shortest form, namely p(Gp).

Now for the last stages of the proof. We go back to
Q' (x, y(u)), defined as Not [x B y(Gy)], i.e. as expressing
the metamathematical proposition that x is not a ‘proof” of
¥(Gy). If we take the class-sign y(u) to be p(u), which is
the same as p(w), since u and w are variables, we get for the
consequences of the truth or falsity of Q' (x, p(u)), i.e. of
the truth or falsity of Not [x B p(Gp)]:

[Not [x B p(Gp)] — [q (Gx, Gp)] is ‘provable’;
| X Bp(Gp) — [Negq (Gx, Gp)] is ‘provable’.

q (Gx, Gp) is the same as r(Gx) (which corresponds to
Godel’s expression in square brackets on the right-hand
side of (15), p. 59).

Suppose now that p(Gp) were to be ‘provable’. Then
there would be a ‘proof-schema’ m such that n B p(Gp),
and hence such that Neg q (Gn, Gp) i.e. Neg r(Gn) would
be ‘provable’. But if p(Gp), i.e. v Gen r(v), were ‘provable’,
so also would be r(Gn). So from the supposition that p(Gp)
is ‘provable’, there follows that both r(Gn) and Neg r(Gn)
are ‘provable’. Call a formal system (a calculus) ‘consistent’
if it contains no pair of ‘provable’ formulae of the forms f,
Neg f. Then, if p(Gp) is ‘provable’, the formal system P is
‘inconsistent’; so, if P is ‘consistent’, p(Gp) is ‘unprovable’
within P.
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Suppose that P is ‘consistent’ and that Neg p(Gp) were
to be ‘provable’. Since p(Gp) is ‘unprovable’,
Not [n B p(Gp)] holds for every string n. Thus q (Gn, Gp),
i.e. r(Gn), is ‘provable’ for every string n; and hence r(m)
is ‘provable’ for every numeral m. But Neg p(Gp) is the
same as Neg [v Gen r(v)]; and, if this were to be ‘provable’,
the curious situation would arise of every substitution-
instance r(m) of the class-sign r(v) being ‘provable’ while
the ‘generalization’ of r(v) with respect to v was ‘disprov-
able’. This situation is, however, compatible with the ‘con-
sistency’ of P: in order to prohibit its occurrence a stronger
form of consistency, called by Godel ‘w-consistency’, must
be assumed to hold of P. [A formal system is ‘w-consistent’
if it contains no class-sign a(u) which is such both that
a(m) is ‘provable’ within the system for every numeral m
and that Neg [u Gen a(u)] is ‘provable’ within the system
(see p. 57).] Since the ‘consistency’ (sometimes called
‘simple consistency’) of P is a consequence of its ‘w-con-
sistency’ (see p. 23), the conjunction of ‘w-consistency’
with the ‘provability’ of Neg p(Gp) yields a contradiction;
so, if the formal system P is ‘w-consistent’, Neg p(Gp) is
‘unprovable’ within P.

Combining these two results tells us that, if P is ‘w-con-
sistent’, neither p(Gp) nor Neg p(Gp) is ‘provable’ within
P, i.e. p(Gp) is undecidable within P.

In order to compare this with my simplified restatement
of Godel’s Proposition VI (p. 18) we must remember that
pP(Gp) is the same as v Gen r(v). r{v) is a recursive class-sign;
so there is a recursive class-sign r(v) in P such that neither
v Gen r(v) nor Neg [v Gen r(v)] is ‘provable’ within P, if P
is ‘w-consistent’.

‘ConsiSTENCY'. If a formal system (a calculus) is ‘incon-
sistent’, it will contain both a ‘provable’ formula f and a
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‘provable’ formula Negf. If its ‘axioms’ and ‘rules of
inference’ are such that the ‘inconsistent’ calculus can be
interpreted, with Neg interpreted as meaning Not and a
‘provable’ formula interpreted as standing for a provable
proposition, so that the deductive system which it represents
includes a deductive sub-system of propositional logic (as
is the case with Godel’s calculus P), then this deductive
system will have as theorems both a proposition p (namely,
the proposition represented by f) and its contradictory
Not p (the proposition represented by Negf), and hence
the conjunction p & Not p—a sel’-contradiction. The de-
ductive system will thus be inconsistent in the usual sense
of the term, which, of course, is why Gédel uses the same
word to apply to a calculus and I use the same word within
single quotation marks.

Since p = (p Vv ¢), which is equivalent to (p & Not p) > g,
is either an axiom or a theorem in propositional logic (the
formula representing it in Godel’s P falls under ‘axiom-
schema’ 11.2: see p. 44), and since modus ponens (q is an
immediate consequence of p and p > ¢) is a rule of infer-
ence in propositional logic (Godel’s P uses the correspond-
ing ‘rule’: see p. 45), every proposition is a consequence
of a self-contradiction. An inconsistent deductive system
which includes a sub-system of propositional logic will
therefore contain every proposition whatever as a theorem
of the system. So if a calculus can be interpreted as repre-
senting a deductive system with the very small number of
features required for it to include propositional logic, and
if the calculus is ‘inconsistent’, every (well-formed) formula
in the calculus will be ‘provable’ within the calculus. Such a
calculus will be of no interest, since there will be no division
of its formulae into those which are ‘provable’ and those
which are not. This is the principal reason why meta-
mathematicians attach such importance to a calculus being
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‘consistent’, altogether apart from whether or not the
calculus is in fact interpreted to represent a deductive
system

If the calculus P were ‘inconsistent’, all its formulae
would be ‘provable’ and so the condition for ‘w-consistency’
(p- 21) could not be satisfied. So if P is ‘w-consistent’, it is
also ‘consistent”. The notion of ‘w-consistency’ is intimately
connected with finitist methods of proof. It will not be
further considered here, since it is not a necessary condition
in an ‘Unprovability’ Theorem for Gddel's formal system
P. In 1936 Rosser, by an argument involving a recursive
class-sign more complicated than Goédel's r(v), established
an ‘Unprovability’ Theorem for P (and for systems of
similar character) which required as a condition only that
P is ‘consistent’.

A principal aim of Hilbert and his school had been to
establish the ‘consistency’ of a calculus capable of being
interpreted as expressing arithmetic, and thus to prove the
consistency of a deductive system of arithmetic. To them
the second great theorem contained in this paper was even
more of a shock than the ‘Unprovability’ Theorem. For
this second theorem proves the undecidability within P of
a formula expressing the ‘consistency’ of P, thus showing
that the ‘consistency’ of P, if P is ‘consistent’, cannot be
established by a ‘proof” within P, i.e. a ‘proof” starting with
only the ‘axioms’ of P and using only P’s ‘rules of inference’.
[If P is ‘inconsistent’, of course both P’s ‘consistency’ and
P’s ‘inconsistency’ can be ‘proved’ within P.]

THE ‘UNPROVABILITY’-OF-‘CONSISTENCY" THEOREM FOR P.
Godel proves this theorem (his Proposition XI: p. 70) in a
general form, corresponding to that of his Proposition VI,
which is concerned with ‘deductions’ as well as ‘proofs’
within P. As with Proposition VI 1 shall discuss Proposi-



24 INTRODUCTION

tion XI in a simplified form in which it is concerned solely
with ‘proofs’ within P. The simplified form is obtained by
taking the class ¢ to be the null class, and consequently B,
and Bew, as equivalent to B and to Bew respectively.

Proposition XI simplified in this way may be stated as
follows: If the formal system P is ‘consistent’, its ‘consis-
tency’ is ‘unprovable’ within P.

In order to prove this theorem Godel uses the result
established towards the end of the proof of his ‘Unprova-
bility” Theorem, namely that, if P is ‘consistent’, the formula
p(Gp) is ‘unprovable’. Since, as we have seen (p. 19), this
formula may be regarded as expressing its own ‘unprov-
ability’, the metamathematical proposition

P is ‘consistent’ — p(Gp) is ‘unprovable’

may be expressed within P by the formula, ‘provable’
within P,
w Imp p(Gp),

where w (this symbol no longer being used as a variable) is
a recursive formula expressing in P the ‘consistency’ of P,
and u Imp v expresses in P the propositional schema Not a
or b (see definition 32, p. 53). Then it follows from the
definition of ‘immediate consequence’ (definition 43, p. 55)
that, if w were to be ‘provable’, p(Gp) would also be
‘provable’. But if P is ‘consistent’, p(Gp) is ‘unprovable’,
and so also is w. Thus a formula w expressing the ‘consis-
tency’ of P is ‘unprovable’ within P—on the assumption,
of course, that P is ‘consistent’.

In this paper Godel only professed to “sketch in outline”
the proof of his Proposition XI, and the sequel in which he
intended to present it “in detail” he never published.
Indeed the part of the detailed proof which establishes that
w Imp p(Gp) is ‘provable’ within P requires exhibiting a
‘proof” within P of w Imp p(Gp), and this is a lengthy and
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complicated business. However there is prima facie a gap
in Godel’s ““sketch’ of the proof, namely how a recursive
formula w which expresses the ‘consistency’ of P can be
constructed in P; but this gap can easily be closed by an
argument which I owe to Rosser. Let t be a particular
formula which is ‘provable’ in P; e.g. one of the ‘axioms’
of P. If Neg t is also ‘provable’, P is ‘inconsistent’. But, if
P is ‘inconsistent’, every (well-formed) formula is ‘provable’
in P, and so Negt is ‘provable’. Thus the ‘inconsistency’
of P is logically equivalent to the ‘provability’ of Negt,
and the ‘consistency’ of P to the ‘unprovability’ of Negt.
So all that is required is a recursive formula in P expressing
the ‘unprovability” of Negt, which is easy to provide.
x By (xis a ‘proof” of the formula y) is a recursive relation-
sign (definition 45, p. 55) with x and y as its free variables;
hence Neg (x B Negt) is a recursive class-sign, with x as
its free variable, and x Gen [Neg (x B Neg t)] is a recursive
formula which expresses in P the ‘unprovability’ of Neg t,
which is equivalent to the ‘consistency’ of P. So the w of
the proof in the last paragraph may be taken to be
x Gen [Neg (x B Negt)], in which case the proof (when
given in detail) will fully satisfy the requirements of finitists
and constructivists.

Godel says at the end of his paper that his ‘Unprovability’-
of-‘Consistency’ Theorem represents “no contradiction of
the formalistic standpoint of Hilbert. For this standpoint
presupposes only the existence of a consistency proofeffected
by finite means, and there might conceivably be finite proofs
which cannot be stated in P” (p. 71). This was a pious hope
of Godel’s, made reasonable when he uttered it by the lack
of precision in Hilbert’s notion of a proof “effected by
finite means™. Clarification of this notion, to which this
paper and later work of Goédel notably contributed, have
explicated it in terms of the concept of recursiveness and of
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extensions of this concept; and it is now certain that, within
any formal system using only such concepts and capable of
expressing arithmetic, it is impossible to establish its own
‘consistency” (if it is ‘consistent’). In 1936 Gentzen was able
to prove the ‘consistency’ of such a formal system, but only
by using non-constructive methods of proof (‘“‘transfinite
induction”) which fall outside the constructive ‘rules of
inference’ of the system. Godel, in this paper which estab-
lished his two great theorems by methods which are con-
structive in a precise sense, on the one hand showed the
essential limitations imposed upon constructivist formal
systems (which include all systems basing a calculus for
arithmetic upon “mathematical induction™), and on the other
hand displayed the power of constructivist methods for
establishing metamathematical truths. To a philosophical
logician it appears an even more remarkable feat to have
been able to establish the internal undecidability of some
arithmetical formulae than to provide (as Hilbert’s school
would have wished) a decision procedure for the whole of
arithmetic.

THE SYNTACTICAL CHARACTER OF GODEL’S THEOREMS.
In concluding this Introduction 1 wish to elaborate a point
I have made several times in passing, namely that Gédel’s
two great theorems are metamathematical theorems about
a calculus (his formal system P) and are not, in themselves,
metamathematical theorems about a deductive system
which is an interpretation of the calculus. However, theo-
rems about deductive systems are immediate corollaries.
The statement that there are arithmetical propositions
which are neither provable nor disprovable within their
arithmetical system (which at the beginning of this Intro-
duction 1 called Godel's Theorem rour court) is, for the
deductive system for arithmetic represented by the cal-
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culus P, a corollary of the ‘Unprovability’ Theorem for P.

To appreciate this, consider the formula v Genr(y)
whose undecidability (subject, of course, to P being ‘w-con-
sistent’) was cstablished by the proof of the ‘Unprovability’
Theorem. Interpret the class-sign r(v) as denoting the class
of G-numbers of the strings which are not ‘proofs’ of p(Gp)
—the second interpretation of r(v) mentioned on p. 19.
This class of numbers, specified thus metamathematically,
may also be specified arithmetically by modifying the
arithmetization of series of formulae, formula, proof pro-
vided by definitions 1-45 (pp. 49ff.). So if ‘generalizing’
r(v) with respect to v is interpreted as stating that the class
of numbers denoted by r(v) is the universal class, the
formula v Genr(v) will be interpreted as expressing the
proposition that every number is a member of a certain
arithmetically specified class—a straight arithmetical pro-
position (call it g). If the calculus P (assumed to be ‘w-con-
sistent’) is interpreted as representing a deductive system S
for arithmetic (and it was devised so that it could represent
that part of the Principia Mathematica deductive system
required for arithmetic), with the ‘axioms’ and ‘rules of
inference’ of P representing the axioms and rules of infer-
ence of S (and such an interpretation permits the interpre-
tation of v Gen r(v) as expressing the arithmetical proposition
g), then g will be neither provable nor disprovable by the
methods of proof available in S, i.e. neither g nor Not g
will be a theorem of S. [In Section 3 of this paper Godel
uses arithmetical in a more restricted sense than 1 have used
it, and establishes that, even in this restricted sense, there
will be arithmetical propositions undecidable in S.] The
undecidability (the ‘unprovability’ and ‘undisprovability®)
of v Gen r(v) within P is transferred to the deductive system
S represented by P to yield the undecidability (the unprov-
ability and undisprovability) of g within S. Similarly the
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‘unprovability’ within P of the ‘consistency’ of P (assumed
to be ‘consistent’) transfers to S to yield the unprovability
within S of the consistency of S.

The undecidability of some arithmetical propositions
within the deductive system S may be classed among the
syntactical metamathematical characteristics of the system
S (represented by the calculus P), for the reason that this
undecidability derives from the undecidability of some
formulae within the calculus P which represents S. Deduc-
tive systems, unlike calculi, have also semantical meta-
mathematical characteristics; in particular their propositions
have or lack the semantical property of being true—what
Godel in his introductory Section 1 calls being ‘‘correct as
regards content” (inhaltlich richtig). Connecting the syn-
tactical property of being provable with the semantical
property of being true by taking every proposition provable
within S (i.e. every axiom and theorem of S) to be true (see
p. 41) gives an additional kick to the undecidability in S of
g—by adding that g is true. For the correlation of arith-
metical and metamathematical propositions effected by the
modified arithmetization ensures that g will be true if
and only if v Gen v(r) is ‘unprovable’ within P, i.e. if and
only if g is unprovable within S. Hence if g were not true,
g would be provable within S and so true—a contradiction.
Consequently if the axioms and theorems of the deductive-
system-for-arithmetic S are true (and this implies the con-
sistency of S, for otherwise two propositions p and Not p,
which cannot both be true, would both be theorems of S),
then there is an arithmetical proposition, namely g, which
is not provable within S (a syntactical characteristic) but
which nevertheless is true (a semantical characteristic).
This metamathematical argument which, combines semanti-
cal with syntactical considerations, establishes the truth of
an arithmetical proposition which cannot be proved within S.
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In his introductory Section 1 Godel intermingles seman-
tical with syntactical considerations in sketching a proof
of the undecidability of g (which is the reason why I have
seldom referred to this section in this Introduction). The
distinction between what is syntactical and what semantical
was not made explicitly until a year or two later (by Tarski,
whose work included rigorously establishing unprov-
ability theorems that were semantical); but it is implicit
in Godel’s remark towards the end of Section 1 that “the
exact statement of the proof [of the undecidability of g],
which now follows, will have among others the task of
substituting for the second of these assumptions [that every
provable formula is also correct as regards content] a
purely formal and much weaker one” (p. 41). Godel’s
proof in Section 2 is a purely syntactical proof about a
calculus (the formal system P) whose interpretation as a
deductive system for arithmetic is, strictly speaking, irre-
levant to his argument. It is true that Godel explains
arithmetization as a way of co-ordinating strings in his
calculus with natural numbers, and he discusses recursive
functions in terms of natural numbers (and I have followed
him in speaking of numbers in both these contexts). But
whenever he talks about numbers, and thus makes a remark
which is prima facie about a deductive system rather than
about a calculus, the remark is always a syntactical remark
about the deductive system, and is therefore in essence a
remark about the calculus which represents the system.
For example, when Gdel says at the beginning of Section 2
that his formal system P has “numbers as individuals”, and
speaks of “‘variables of first type (for individuals, i.e. natural
numbers including 0)” (p. 42), all that is relevant to his
argument is that numerals are the only substitution values
(not containing variables) permitted for his variables of
first type. This is shown most clearly when Godel specifies
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the substitution operation in connexion with his ‘axiom-
schema’ 1II.1 (p. 44), which requires the substitution for
a variable of first type of a sign of first type, which he has
previously explained as being “a combination of signs of
the form: a, fa, ffa, fffa, etc., where a is either ““0” [in which
case the sign is a number-sign] or a variable of first type”
(p. 42; in Godel’s text 0 occurs instead of “0”, but this
would seem to be a misprint).

Godel’s ‘arithmetization’ of metamathematical concepts
(as also my ‘modified arithmetization’) is in fact effected
by correlating to each string x another string which is a
numeral: there is no need to pass from a string x to this
numeral by the indirect route of first moving to the Gédel
number (or G-number) of x and then passing from this
number to the numeral which expresses it in the calculus P.
In the argument the equivalence, for example, between the
metamathematical proposition about P stating that the
string (the series of formulae) n is a ‘proof” of the string
(the formula) y and an arithmetical relationship between
the G-numbers n and y of these strings may equally well be
construed as an equivalence between the metamathematical
proposition and the occurrence as a ‘theorem’ of P (i.e. as
a ‘provable’ formula within P) of an appropriate ‘recursive’
‘arithmetical’ formula f containing the strings (the numerals)
Gn and Gy. [The requirement that f should be ‘recursive’
ensures that, if f is not a ‘theorem’ of P, Negf is.] The
peculiarity of the ‘recursive’ class-sign r(v) of the ‘Un-
provability’ Theorem is that, if there were to be a string n
which was a ‘proof” of v Genr(v), the ‘recursive’ ‘arith-
metical’ formula Neg r(Gn) would occur as a ‘theorem’ of
P, whereas r(Gn) would also appear as a ‘theorem’ of P as
an ‘immediate consequence’ of a formula falling under
‘axiom-schema’ III.1 (p. 44) and of v Genr(v). In other
words, if v Gen r(v) were to be a ‘theorem’ (derived by a
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‘proof’ n), r(Gn) would be a ‘theorem’ for a reason internal
to the calculus, and Neg r(Gn) would be a ‘theorem’ for the
reason that it was the ‘recursive’ formula whose occurrence
as a ‘theorem’ was equivalent, according to the ‘modified
arithmetization’, to n being a ‘proof” of v Gen r(v).

In the last paragraph, where part of the proof of Godel’s
‘Unprovability’ Theorem has been restated in terms which
either are used within the calculus P or are syntactical
terms used to describe features of P, I have put single
quotation marks round ‘recursive’, ‘arithmetical’, ‘arith-
metization’, ‘modified arithmetization’ to indicate that these
words are being used (like ‘theorem’, ‘proof’, ‘provable’,
etc.) as calculus terms and not as deductive-system terms.
The whole of Godel’s formal argument in this paper is
syntactical: that he arithmetizes metamathematics instead
of only ‘arithmetizing’ it is purely a matter of expository
convenience. For his arithmetization is in terms of recursive
arithmetical concepts, and by his Proposition V (see also
p. 15) the question as to whether or not a recursive arith-
metical relationship holds between numbers is equivalent to
the syntactical question as to which of two ‘recursive’
formulae containing numerals, of the forms f, Negf res-
pectively, is a ‘theorem’ of the calculus P. [In my sketch
(pp. 18-21) of Godel’s proof of the ‘Unprovability’ Theorem
I have declined to follow him in using such terms as formula,
proof, class-sign with an arithmetical interpretation; and I
have, so far as was conveniently possible, employed G-
numerals instead of G-numbers.]

Thus Goédel’s two great theorems are theorems about his
calculus P: they assert the ‘unprovability’ within P of certain
well-formed formulae of P (on the assumption that P is
‘w-consistent’ or ‘consistent’ respectively). Of course the
interest to the learned world of the calculus P is that it can
be regarded as representing a deductive system for arith-



32 INTRODUCTION

metic in which, therefore, there are undecidable arithmetical
propositions. Though Godel’s formal proofs apply only
to P, he indicates how similar proofs would apply to any
calculus satisfying two very general conditions (p. 62),
conditions so general that any calculus capable of expressing
arithmetic can hardly fail to satisfy them. So this paper of
Godel’s proclaimed the thesis, which has been clarified and
confirmed by the work of subsequent metamathematicians,
that no calculus can be devised in such a way that every
arithmetical proposition is represented in it by a formula
which is either ‘provable’ or ‘disprovable’ within the cal-
culus, and therefore that any deductive system whatever
for arithmetic will have the general syntactical characteristic
of not containing either a proof or a disproof of every
arithmetical proposition.

This syntactical fact about arithmetic is sometimes des-
cribed by saying that arithmetic, in its very nature, is
incomplete. Godel's discovery of this incompleteness, pre-
sented in this paper, is one of the greatest and most sur-
prising of the intellectual achievements of this century.

[l am much indebted to Dr T. J. Smiley for criticizing most
helpfully the penultimate draft of this Introduction.
R.B.B.]



NOTE

The symbols Godel uses for metamathematical concepts
or their Gddel numbers are mainly abbreviations of German
words. Although the concepts themselves are carefully
defined in the text, the following alphabetical list of the
more important of these symbols with their etymology may
be helpful to the reader:

A from
Aeq from
Ax  from
B from
Bew from
Bw  from
Con from
Dis from
E from
Elf from
Ex from
Fl from
Flg  from
Form from
Fr from
FR  from
Geb from
Gen from
Gl from

“Anzahl”
“‘Aequivalenz”
“Axiom”
“Beweis”
“Beweisbar”
“Beweisfigur”
“Conjunktion”
“Disjunktion™
“Einklammern”

“Elementarformel™

“Existenz”
“unmittelbare Folge”

“Folgerungsmenge”

“Formel”

“frei”

“Reihe von Formeln™
“gebunden™
“Generalisation™
“Glied”
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I

I

number
equivalence
axiom
proof
provable
proof-schema
conjunction
disjunction
include in
brackets
elementary
formula
existence
immediate
conscqticnce
set of
consequences
formula
free
seriesof formulae
bound
generalization
term
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Imp from “Implikation” = implication
1 from “Lénge” = length
Neg from “Negation” = negation
Op from “Operation” = operation
Pr  from “Primzahl” = prime number
Prim from ‘Primzahl” = prime number
R from ‘Zahlenreihe” = number series
Sh  from *“Substitution” = substitution
St from “Stelle” = place
Su  from “Substitution” = substitution
Th  from “TypenerhShung’ = type-lift
Typ from “Typ” = type
Var from ‘“Variable” = variable
Wid from “Widerspruchsfreiheit” = consistency
z from “Zahlzeichen” = number-sign

The only way in which the translation deviates from
Godel’s symbolism is that, from p. 57 onwards, ¢ is used to
stand for the class which Godel denotes by k.
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ON FORMALLY UNDECIDABLE PROPOSITIONS
OF PRINCIPIA MATHEMATICA AND RELATED
SYSTEMS 1!

by Kurt Godel, Vienna

1
The development of mathematics in the direction of greater
exactness has—as is well known—led to large tracts of it
becoming formalized, so that proofs can be carried out
according to a few mechanical rules. The most compre-
hensive formal systems yet set up are, on the one hand, the
system of Principia Mathematica (PM)? and, on the other,
the axiom system for set theory of Zermelo-Fraenkel (later
extended by J. v. Neumann).® These two systems are so
extensive that all methods of proof used in mathematics
today have been formalized in them, i.e. reduced to a few
axioms and rules of inference. It may therefore be surmised
that these axioms and rules of inference are also sufficient

1 Cf. the summary of the results of this work, published in Anzeiger
der Akad. d. Wiss. in Wien (math.-naturw. K1.) 1930, No. 19.

2 A. Whitehead and B. Russzll, Principia Marhematica, 2nd edition,
Cambridge 1925. In particular, we also reckon among the axioms of
PM the axiom of infinity (in the form: there exist denumerably many
individuals), and the axioms of reducibility and of choice (for all
types).

3 Cf. A. Fraenkel, ‘Zehn Vorlesungen iiber die Grundlegung der
Mengenlehre’, Wissensch. u. Hyp., Vol. XXXI; J. v. Neumann, ‘Die
Axiomatisierung der Mengenlehre’, Math. Zeitschr. 27, 1928, Journ. f.
reine u. angew. Math. 154 (1925), 160 (1929). We may note that in
order to complete the formalization, the axioms and rules of inference
of the logical calculus must be added to the axioms of sst-theory given
in the above-mentioned papers. The remarks that follow also apply
to the formal systems presented in recent years by D. Hilbert and his
colleagues (so far as thesz have yet been published). Cf. D. Hilbert,
Math. Ann, 88, Abh. aus d. math. Sem. der Univ. Hamburg 1 (1922),
VI (1928); P. Bernays, Math. Ann. 90; J. v. Neumann, Math. Zeitschr.
26 (1927); W. Ackermann, Math. Ann. 93.
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to decide a/l mathematical questions which can in any way
at all be expressed formally in the systems concerned. It
is shown below that this is not the case, and that in both
the systems mentioned there are in fact relatively simple
problems in the theory of ordinary whole numbers* which
cannot be decided from the axioms. This situation is not
due in some way to the special nature of the systems set up,
but holds for a very extensive class of formal systems, in-
cluding, in particular, all those arising from the addition
of a finite number of axioms to the two systems mentioned,’
provided that thereby no false propositions of the kind
described in footnote 4 become provable.

Before going into details, we shall first indicate the main
lines of the proof, naturally without laying claim to exact-
ness. The formulae of a formal system—we restrict our-
selves here to the system PM—are, looked at from outside,
finite series of basic signs (variables, logical constants and
brackets or separation points), and it is easy to state
precisely just which series of basic signs are meaningful
formulae and which are not.® Proofs, from the formal
standpoint, are likewise nothing but finite series of formulae
(with certain specifiable characteristics). For metamathe-
matical purposes it is naturally immaterial what objects are
taken as basic signs, and we propose to use natural num-
bers” for them. Accordingly, then, a formula is a finite

4 1.e., more precisely, there are undecidable propositions in which,
besides the logical constants =~ (not), v (or), (x) (for all) and = (iden-
tical with), there are no other concepts beyond + (addition) and
. (multiplication), both referred to natural numbers, and where the
prefixes (x) can also refer only to natural numbers.

s In this connection, only such axioms in PM are counted as distinct
as do not arise from each other purely by change of type.

¢ Here and in what follows, we shall always understand the term
“formula of PM” to mean a formula written without abbreviations
(i.e. without usz of definitions). Definitions szrve only to abridge
the written text and are therefore in principle superfluous.

7 1.e. we map the basic signs in one-to-one fashion on the natural
numbers (as is actually done on p. 45).
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series of natural numbers,® and a particular proof-schema
is a finite series of finite series of natural numbers. Meta-
mathematical concepts and propositions thereby become
concepts and propositions concerning natural num-
bers, or series of them,® and therefore at least partially
expressible in the symbols of the system PM itself. In
particular, it can be shown that the concepts, “formula”,
“proof-schema’, “provable formula” are definable in the
system PM, i.e. one can give'® a formula F(v) of PM—for
example—with one free variable v (of the type of a series of
numbers), such that F(v)—interpreted as to content—states:
v is a provable formula. We now obtain an undecidable
proposition of the system PM, i.e. a proposition A4, for which
neither A nor not-A are provable, in the following manner:
A formula of PM with just one free variable, and that of
the type of the natural numbers (class of classes), we shall
designate a class-sign. We think of the class-signs as being
somehow arranged in a series,’’ and denote the n-th one
by R(n); and we note that the concept “class-sign™ as well
as the ordering relation R are definable in the system PM.
Let « be any class-sign; by [«; n] we designate that formula
which is derived on replacing the free variable in the class-
sign o by the sign for the natural number n. The three-
term relation x = [y; z] also proves to be definable in PM.
We now define a class K of natural numbers, as follows:

8 I.e. a covering of a section of the number series by natural numbers.
(Numbers cannot in fact be put into a spatial order.)

o In other words, the above-described procedure provides an iso-
morphic image of the system PM in the domain of arithmetic, and all
metamathematical arguments can equally well be conducted in this
isomorphic image. This occurs in the following outline proof, i.e.
“formula™, ‘“‘proposition’, “‘variable”, etc. are always to be under-
stood as the corresponding objects of the isomorphic image.

1o It would be very simple (though rather laborious) actually to
write out this formula.

11 Perhaps according to the increasing sums of their terms and, for
equal sums, in alphabetical order.
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ne K = Bew [R(n); n]''? )

(where Bew x means: x is a provable formula). Since the
concepts which appear in the definiens are all definable in
PM, so too is the concept K which is constituted from them,
i.e. there is a class-sign S,'? such that the formula [S; n]—
interpreted as to its content—states that the natural number
n belongs to K. S, being a class-sign, is identical with some
determinate R(q), i.e.
§ = R(q)

holds for some determinate natural number g. We now
show that the proposition [R(g); ¢]'? is undecidable in PM.
For supposing the proposition [R(g); g] were provable, it
would also be correct; but that means, as has been
said, that g would belong to K, i.e. according to (l),
Bew [R(g); q] would hold good, in contradiction to our
initial assumption. If, on the contrary, the negation of
[R(q); q] were provable, then n ¢ K, i.e. Bew [R(q); ¢] would
hold good. [R(g);q] would thus be provable at the same
time as its negation, which again is impossible.

The analogy between this result and Richard’s antinomy
leaps to the eye; there is also a close relationship with the
“liar” antinomy,'* since the undecidable proposition
[R(g); q] states precisely that ¢ belongs to K, i.e. according
to (1), that [R(g); q] is not provable. We are therefore con-
fronted with a proposition which asserts its own unprov-

112 The bar-sign indicates negation.

12 Again there is not the slightest difficulty in actually writing out
the formula S.

13 Note that “[R(g); q]” (or—what comes to the same thing—
“[S; q]”) is merely a metamathematical description of the undecidable
proposition, But as soon as one has ascertained the formula S, one
can naturally also determine the number g, and thereby effectively
write out the undecidable proposition itszIf.

14 Every epistemological antinomy can likewise be used for a similar
undecidability proof.



ON FORMALLY UNDECIDABLE PROPOSITIONS 4]

ability.!®> The method of proof just exhibited can clearly
be applied to every formal system having the following
features: firstly, interpreted as to content, it disposes of suffi-
cient means of expression to define the concepts occurring
in the above argument (in particular the concept “provable
formula’); secondly, every provable formula in it is also
correct as regards content. The exact statement of the above
proof, which now follows, will have among others the task
of substituting for the second of these assumptions a purely
formal and much weaker one.

From the remark that [R(g); ¢] asserts its own unprov-
ability, it follows at once that [R(g);q] is correct, since
[R(9); q] is certainly unprovable (because undecidable). So
the proposition which is undecidable in the system PM yet
turns out to be decided by metamathematical considerations.
The close analysis of this remarkable circumstance leads to
surprising results concerning proofs of consistency of formal
systems, which are dealt with in more detail in Section 4
(Proposition XI).

2

We proceed now to the rigorous development of the proof
sketched above, and begin by giving an exact description of
the formal system P, for which we seek to demonstrate the
existence of undecidable propositions. P is essentially the
system obtained by superimposing on the Peano axioms the
logic of PM !¢ (numbers as individuals, relation of successor
as undefined basic concept).

's In spite of appearances, there is nothing circular about such a
proposition, since it begins by asserting the unprovability of a wholly
determinate formula (namely the g-th in the alphabetical arrangement
with a definite substitution), and only subsesquently (and in some way
by accident) does it emerge that this formula is precisely that by which
the proposition was itself expressed.

16 The addition of the Peano axioms, like all the other changes made

in the system PM, serves only to simplify the proof and can in principle
be dispensed with.
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The basic signs of the system P are the following:

1. Constants: “~” (not), “v” (or), “IT” (for ail), “0”
(nought), “f”* (the successor of), “(”’, ©)” (brackets).

II. Variables of first type (for individuals, i.e. natural
numbers including 0): “x,”, “yp,”, “z,”, .. ..

Variables of second type (for classes of individuals):

[P T TR T )

5
X2y Y2, Zz2 5.

Variables of third type (for classes of classes of indi-

B e 93 g6, 3

viduals): “x;3”, “y3”, “z37, ...

and so on for every natural number as type.'’

Note: Variables for two-termed and many-termed func-
tions (relations) are superfluous as basic signs, since rela-
tions can be defined as classes of ordered pairs and ordered
pairs again as classes of classes, e.g. the ordered pair a, b
by ((a), (a, b)), where (x, y) means the class whose only
elements are x and y, and (x) the class whose only element
is x.18

By a sign of first type we understand a combination of
signs of the form:

a, fa, ffa, fffa . . . etc.

where a is either 0 or a variable of first type. In the former
case we call such a sign a number-sign. For »>1 we under-
stand by a sign of n-th type the same as variable of n-th type.
Combinations of signs of the form a(b), where b is a sign
of n-th and a a sign of (n+1)-th type, we call elementary

17 It is presupposed that for every variable type denumerably many
signs are available.

13 Unhomogeneous relations could also be defined in this manner,
e.g. a relation between individuals and classes as a class of elements of
the form: ((x2), ((x1), x2)). As a simple consideration shows, all the
provable propositions about relations in PM are also provable in
this fashion.
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formulae. The class of formulae we define as the smallest
class!® containing all elementary formulae and, also, along
with any a and b the following: ~(a), (a) v (b), xII(a)
(where x is any given variable).'® We term (a) v (b) the
disjunction of @ and b, ~(a) the negation and xII(a) a
generalization of a. A formula in which there is no free
variable is called a propositional formula (free variable being
defined in the usual way). A formula with just » free indi-
vidual variables (and otherwise no free variables) we call an
n-place relation-sign and for n=1 also a class-sign.

By Subst a Z (where a stands for a formula, v a variable

and b a sign of the same type as v) we understand the
formula derived from a, when we replace v in it, wherever
it is free, by .2° We say that a formula a is a type-lift of
another one b, if a derives from b, when we increase by the
same amount the type of all variables appearing in b.

The following formulae (1-V) are called axioms (they are
set out with the help of the customarily defined abbrevia-
tions: ., o, =, (Ex), =,?! and subject to the usual con-
ventions about omission of brackets)??:

122 Thus x IT (a) is also a formula if x does not occur, or does not
occur free, in a. In that case x IT (@) naturally means the same as a.

19 With regard to this definition (and others like it occurring later),
cf. J. Lukasiewicz and A. Tarski, ‘Untersuchungen iiber den Aussa-
genkalkul', Comptes Rendus des séances de la Société des Sciences et
des Lettres de Varsovie XXII1, 1930, CI. 111.

20 Where v does not occur in a as a free variable, we must put
Subst a(j) = a. Note that “Subst” is a sign belonging to meta-
mathematics.

2t As in PM I, %13, x: = y: is to be thought of as defined by
x2IT (x2(x1) = x2(y1)) (and similarly for higher types.)

22 To obtain the axioms from the schemata presented (and in the
cases of 11, 111 and 1V, after carrying out the permitted substitutions),
one must therefore still

1. eliminate the abbreviations,
2. add the suppresszd brackets,

Note that the resultant expressions must be *“formulae” in the above
sense. (Cf. also the exact definitions of the metamathematical concepts
on pp. 49ff.)
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L 1. ~(fx; =0)

2. fxy=frox =y

3. x5(0) . xq TT(xp(xy) 2 x2(fx1)) 2 xq TL(x,(xy))
IL. Every formula derived from the following schemata by
substitution of any formulae for p, g and r.

l.pvpop 3.pvgoqvVvyp
2.popVvyg 4. (pog@>(rvporvyg

III. Every formula derived from the two schemata

1. vII(a) > Substa lc)
2. vIT(bva)> bvvll(a)

by making the following substitutions for a, v, b, ¢ (and
carrying out in 1 the operation denoted by “Subst™): for a
any given formula, for v any variable, for  any formula in
which v does not appear free, for ¢ a sign of the same type
as v, provided that ¢ contains no variable which is bound
in a at a place where v is free.??

1V. Every formula derived from the schema

1. (Eu) (I (u(v) = a))
on substituting for v or u any variables of types n or n+1
respectively, and for a a formula which does not contain

u free. This axiom represents the axiom of reducibility
(the axiom of comprehension of set theory).

V. Every formula derived from the following by type-lift
(and this formula itself):

Loxy TH(xa(xy) = ya(xy)) 2 x5 = y,.

23 ¢ is therefore either a variable or 0 or a sign of the form f. .. fu
where u is either 0 or a vanable of type 1. With regard to the concept
“free (bound) at a place in a” cf. section 1 A5 of the work cited in
footnote 24.
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This axiom states that a class is completely determined
by its elements.

A formula ¢ is called an immediate consequence of a
and b, if a is the formula (~ (b)) v (c), and an immediate
consequence of g, if ¢ is the formula v IT (a), where v de-
notes any given variable. The class of provable formulae is
defined as the smallest class of formulae which contains the
axioms and is closed with respect to the relation “immedi-
ate consequence of .24

The basic signs of the system P are now ordered in one-to-
one correspondence with natural numbers, as follows:

wr 1 wyn 7 “
“L3 “I” ... 9 L. 13
an s

Furthermore, variables of type n are given numbers of
the form p" (where p is a prime number >13). Hence, to
every finite series of basic signs (and so also to every
formula) there corresponds, one-to-one, a finite series of
natural numbers. These finite series of natural numbers we
now map (again in one-to-one correspondence) on to
natural numbers, by letting the number 2™ .3" ... pM™
correspond to the series ny, n,, . . . n,, where p, denotes the
k-th prime number in order of magnitude. A natural num-
ber is thereby assigned in one-to-one correspondence, not
only to every basic sign, but also to every finite series of
such signs. We denote by ®(a) the number corresponding
to the basic sign or series of basic signs a. Suppose now one
is given a class or relation R (ay, a,, . . . a,) of basic signs
or series of such. We assign to it that class (or relation)

24 The rule of substitution becomes superfluous, since we have
already dealt with all possible substitutions in the axioms themselves
(as is also done in J. v. Neumann, ‘Zur Hilbertschen Beweistheorie’,
Math., Zeitschr. 26, 1927).
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R’ (x4, X5, ...x,) of natural numbers, which holds for
Xy, X5, .. . X, When and only when therc exist a,, a,. . . . a,
such that x,=®(a;) (i=1,2,...n) and R (a,,a,, ...a,)
holds. We represent by the same words in italics those classes
and relations of natural numbers which have been assigned
in this fashion to such previously defined metamathematical
concepts as “‘variable”, “formula’, “propositional formula”,
“axiom”, “provable formula”, etc. The proposition that
there are undecidable problems in the system P would
therefore read, for example, as follows: There exist propo-
sitional formulae a such that neither a nor the negation of a
are provable formulae.

‘We now introduce a parenthetic consideration having no
immediate connection with the formal system P, and first
put forward the following definition: A number-theoretic
function®® ¢ (x,, x5, . . . X,) is said to be recursively defined
by the number-theoretic functions ¥ (xy, x5, ... x,_,) and
U(X1, Xgs v v v Xyyy), if for all x,, . .. x,, k2° the following
hold:

0% %) = Y (.. %) 5
¢(k+1,x2,...x,,)=u(k,¢(k,x2,...x,,),x2,...x,,).()

A number-theoretic function ¢ is called recursive, if
there exists a finite series of number-theoretic functions
1> ¢25 . - . Oy, Which ends in ¢ and has the property that
every function ¢, of the series is either recursively defined
by two of the earlier ones, or is derived from any of the
earlier ones by substitution,?” or, finally, is a constant or

25 J.e. its field of definition is the class of non-negative whole
numbers (or n-tuples of such), respectively, and its values are non-
negative whole numbers.

26 In what follows, small italic letters (with or without indices) are
always variables for non-negative whole numbers (failing an express
statement to the contrary).

27 More precisely, by substitution of certain of the foregoing func-
tions in the empty places of the preceding, e.g. i (xi, x2) =
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the successor function x-+1. The length of the shortest
series of ¢;, which belongs to a recursive function ¢, is
termed its degree. A relation R (x, ... x,) among natural
numbers is called recursive,?® if there exists a recursive
function ¢ (x, . .. x,) such that for all x, x,, ... x,

RGxy ... x) ~ [ (xp ... %) = OF°.

The following propositions hold:

1. Every function (or relation) derived from recursive func-
tions (or relations) by the substitution of recursive functions
in place of variables is recursive; so also is every function
derived from recursive functions by recursive definition
according to schema (2).

1. If R and S are recursive relations, then so also are R,
R v S (and therefore also R & S).

1I1. If the functions ¢(x) and Y(v) are recursive, so also is
the relation: ¢(x)= Y(y).>°

1V. If the function ¢(x) and the relation R (x, v) are recur-
sive, so also then are the relations S, T

S ) ~ (Ex) [x £ ¢ (x) & R(x, )]
Ty ~@®I[x=¢E->R(x )]

ép [hg (x1, x2), ¢r (x2)] (p,q, r<k). Not all the variables on the left-
hand side must also occur on the right (and similarly in the recursion
schema (2)).

28 We include classes among relations (one-place relations).
Recursive relations R naturally have the property that for every
specific n-tuple of numbers it can be decided whether R (x1...Xxz)
holds or not.

29 For all considerations as to content (more especially also of a
metamathematical kind) the Hilbertian symbolism is used, cf. Hilbert-
Ackermann, Grundziige der theoretischen Logik, Berlin 1928.

30 We use gothic letters ¥, 1), as abbreviations for given n-tuple sets
of variables, e.g. x1, X2. .. Xn.
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and likewise the function

Y(xy)=ex[x = ¢ ()& R(x ),

where & x F(x) means: the smallest number x for which
F(x) holds and 0 if there is no such number.

Proposition I follows immediately from the definition of
“recursive”. Propositions 1l and III are based on the
readily ascertainable fact that the number-theoretic func-

tions corresponding to the logical concepts , v, =

a(x), B(x,¥), 7 (x,»)

namely

a0 =1;a(x)=0 for x=0

B(0,x) = B(x,0) = 0; B(x,y) =1,if x,y both+0

Y,y =0,ifx=yp; y(,y)=1Lifx+y
are recursive. The proof of Proposition 1V is briefly as
follows: According to the assumption there exists a recursive
p (x, y) such that

R(x,9) ~ [p(x,9) = 0]

We now define, according to the recursion schema (2), a
function y (x, y) in the following manner:

x(0,9) =0
x(n+1,9) = (n+1) . a+x (n,9) . 2 (@
where

a=of(p@©y)].alp@+1,9)].alx @)

¥ (n+1, v) is therefore either =n+1 (ifa=1) or =y (n, )
(if a=0).32 The first case clearly arises if and only if all the
constituent factors of @ are 1, i.e. if

31 We take it to be recognized that the functions x +y (addition)
and x . y (multiplication) are recursive.

32 g cannot take values other than 0 and 1, as is evident from the
definition of a.
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R(O,v) & R (n+1,1) & [x (n,9) = 0].

From this it follows that the function y (n, 1) (considered
as a function of n) remains 0 up to the smallest value of n
for which R (n, y) holds, and from then on is equal to this
value (if R (0,v) is already the case, the corresponding
% (x, 1) is constant and =0). Therefore:

¥ (x0) = x(6®,)
S ) ~ R[Y (x1), 9]

The relation 7 can be reduced by negation to a case ana-
logous to S, so that Proposition 1V is proved.

The functions x+y, x.y, x’, and also the relations
x <y, x=y are readily found to be recursive; starting from
these concepts, we now define a series of functions (and
relations) 1-45, of which each is defined from the earlier
ones by means of the operations named in Propositions I
to 1V. This procedure, generally speaking, puts together
many of the definition steps permitted by Propositions I to
IV. Each of the functions (relations) 1-45, containing, for
example, the concepts “formula”, “axiom”, and “immediate
consequence”, is therefore recursive.

l.xly=(Ez)[z£x &x=y.2]*3
x is divisible by y.3*

2. Prim(x) = (E2) [z<x &z4 1 & 2z + x & x/z]
&x>1
X is a prime number.

33 The sign = is used to mean “‘equivalence by definition”, and
therefore does duty in definitions either for = or for ~ (otherwise the
symbolism js Hilbertian).

3¢ Wherever in the following definitions one of the signs (x), (E x),
€ x occurs, it is followed by a limitation on the value of x. This
limitation merely serves to ensure the recursive nature of the concept
defined. (Cf. Proposition IV.) On the other hand, the range of the
defined concept would almost always remain unaffected by its omission.
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.0Prx=0

(n+1DPrx=¢ey[y=<x&Prim(y) & x/y
& y>nPrx]

n Prx is the n-th (in order of magnitude) prime number
contained in x.34?

.0t =1

(m+D!=®m+1).n!

. Pr(0)=0

Pr(n+1)=ey[y<{Pr(n}!+ 1 &Prim(y)
& y > Pr(n)]
Pr(n) is the n-th prime number (in order of magnitude).

.nGlx=¢ey[y<x &x/(nPrxy & x/(nPrx)’*"]
n Gl x is the n-th term of the series of numbers assigned
to the number x (for n > 0 and n not greater than the
length of this series).

X)) =eyySx&yPrx>0&(y+1)Prx=0]
/(x) is the length of the series of numbers assigned to x.

Cx ¥y =ez[zZ [Pr{I(x) + 1)}
& (my[n £1(x) > nGlz=nGlx]
&M <n=l() - {n+1(x)} Glz=nGly]]
x % ycorresponds to the operation of ““joining together”
two finite series of numbers.

. R(x) = 2%
R (x) corresponds to the number-series consisting only
of the number x (for x > 0).

E(x) = R(11) ¥x % R(13)
E(x) corresponds to the operation of “bracketing”
[11 and 13 are assigned to the basic signs “(”’ and *“)’].

348 For 0 < n < z, where z is the number of distinct prime numbers

dividing into x. Note that forn = z+1, nPrx = 0.
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nVarx = (Ez)[13<z< x & Prim(z) & x = 2"]
&n=+0

x is a variable of n-th type.

Var(x) = (En) [n < x & nVarx]

x is a variable.

Neg(x) = R(5) ¥ E(x)

Neg(x) is the negation of x.

. xDisy = E(x) ¥ R(7) ¥ E(y)

x Dis y is the disjunction of x and y.

. xGeny = R(x) ¥ R(9) ¥ E(y)

xGeny is the generalization of y by means of the
variable x (assuming x is a variable).

.ONx=x

(n+1)Nx=R(3) ¥nNx
nNx corresponds to the operation: “n-fold prefixing
of the sign ‘" before x.”

. Z(n) = nN [R(1)]

Z (n) is the number-sign for the number n.

. Typ,'(x) = (Em,n) {im,n < x & [m=1v 1Varm]

& x = nN [R(m)]}>*®
X is a sign of first type.

- Typ,(x) = [n=1&Typ,' ()] v [n>1 &(Ev) {v<x

& nVarv & x = R(v)}]

x is a sign of n-th type.

Elf(x) = (Ey,z,n) [y,2,n < x & Typ,(»)
& Typuy1(2) & x =z * E(y)]

x is an elementary formula.

340, n < x stands for: m < x & n = x (and similarly for more

than two variables).

[183]
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Op(x,y,z) = x=Neg(y) vx=yDisz vV (Ev)[v < x
& Var(v) & x = vGeny]

FR(x) = (n) {0 <n<1I(x) > Elf(nGIx) v (Ep,q)
[0<p,g<n&Op(nGlx, pGlx,qGlx)]}
&1(x)>0

x is a series of formulae of which each is either an
elementary formula or arises from those preceding by
the operations of negation, disjunction and general-
ization.

Form (x) = (En) {n < (Pr [/(x)*])~I'®"
& FR(n) & x = [I(n)] GI n}**

x is a formula (i.e. last term of a series of formulae n).

vGebn,x = Var(v) & Form(x) & (Ea,b,¢) [a,b,c £ x
& x = a % (vGenb) % ¢ & Form(b)
&l(a)+ 1= n = (a) + I(vGenb)]

The variable v is bound at the n-th place in x.

vFrn,x = Var(v) & Form(x) & v=nGlx
&n=/(x) & vGebn,x

The variable v is free at the n-th place in x.

vFrx = (En) [n £ 1(x) & vFrn, x]

v occurs in x as a free variable.

Sux()) = ez {z Z[Prd(x) + 1)
& [(Eu,v)u,v = x & x =u ¥ R(nGlx) ¥ v
&z=u*%y*xv&n=1u)+1]}

Sux(j) derives from x on substituting y in place of
the n-th term of x (it being assumed that 0 < n < /(x)).

35 The limitation n < (Pr [I (x)]2) *I()1* means roughly this: The

length of the shortest series of formulae belonging to x can at most be
equal to the number of constituent formulae of x. There are however
at most /(x) constituent formulae of length 1, at most /(x) -1 of
length 2, etc. and in all, therefore, at most ¥ [/ (x) {/ (x) +1}] = [/ (x)]2.
The prime numbers in n can therefore all be assumed smaller than
Pr {[I(x)]?}, their number < [/(x)]? and their exponents (which are con-
stituent formulae of x) = x.
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28. OSto,x =en{n<I1(x) & vFrn,x &(Ep)[n<p £ 1(x)
& vFrp,x]}
(k+1DSto,x =en{n<kSto,x
&vFrn,x & (Ep)[n<p<kStv,x & vFrp,x]}
k Stv,x is the (k+1)th place in x (numbering from
the end of the formula x) at which v is free in x (and
0, if there is no such place).

29. A(w,x)=¢n {n<1(x) &n Stv,x =0}
A (v, x) is the number of places at which v is free in x.

30. Shy(xy) = x
Sbs1 (x)) = Su [Sb, (x;)l(

31. Sb(x'y’) = Shyg, x (X;)36
Sb(x3) is the concept Subst a(3), defined above.>”

k Stv, x
y

32. xImpy = [Neg(x)]Disy
xCony = Neg {[Neg(x)] Dis [Neg(»)]}
xAeqy = (xImpy) Con(yImpx)
vExy = Neg {vGen[Neg(»]}

3B.nThx=ey p=x* &Rk 1(x) = kGIx <13
&kGly=kGIx)v (kGIx > 13
& kGly = kGlx.[1 Pr(k GI0T]}
nThx is the n-th type-lift of x (in the case when x and
nThx are formulae).

Il

To the axioms I, 1 to 3, there correspond three deter-
minate numbers, which we denote by z,, z,, z;, and we
define:

4. Z-Ax(x) = (x=z, Vx=z,VXx=1z;)
36 Where v is not a variable or x not a formula, then Sb (x”) =X

3 v\ z - v W e
7 Instead of Sb [Sb (x y) w] we write: Sb (xy Z) (and similarly
for more than two variables).
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A;—Ax(x) = (Ey) [y < x & Form(y)
& x = (yDisy) Imp y]
x is a formula derived by substitution in the axiom-
schema II, 1. Similarly 4,—Ax, A;—Ax, A,—Ax
are defined in accordance with the axioms 1I, 2 to 4.

A—Ax(x) = A\—Ax(x) Vv A,—Ax(x) v
As—Ax(x) v Ay,—Ax(x)

x is a formula derived by substitution in an axiom of the
sentential calculus.

Q(z,y,0) = (Enymw)[n () &m£l(2) &wsz
&w=mGlx & wGebn,y & vFrn,y]

z contains no variable bound in y at a position where v
is free.

Li—Ax(x) = (Ev,y,z,n) {v,y,z,n < x & nVarv
& Typ,(z) & Form(p) & Q(z,y,v)
& x = (vGeny) Imp [Sb ()]}

x is a formula derived from the axiom-schema III, 1
by substitution.

L,—Ax(x) = (Ev,q,p) {v,q,p < x & Var(v)
& Form(p) & vFrp & Form(g)
& x = [vGen(pDisq)] Imp [p Dis (v Geng)]}
x is a formula derived from the axiom-schema III, 2 by
substitution.
R—Ax(x) = (Eu,v,y,n) [u,v,y,n < x & nVarv
& (n+ 1)Varu & u Fry & Form(y)
& x = u Ex {vGen [[R(u) * E(R(v))] Aeqy]}]
x is a formula derived from the axiom-schema IV, 1 by
substitution.
To the axiom V, | there corresponds a determinate num-
r z, and we define:

. M—Ax(x)=(En)[n<x &x=nThz,]
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42. Ax(x) =Z—Ax(x) v A—Ax(x) v Li—Ax(x) v
L,—Ax(x) v R—Ax(x) v M—Ax(x)
x is an axiom.

43. Fl(xy zy = y=zImpx v (Ev) [v < x & Var(v)
& x =vGeny]
x is an immediate consequence of y and z.

44. Bw(x) = (n) {0 <n=1(x) > Ax(nGlx)
V(Ep,9)[0<p,qg<n&Fl(nGlx, pGlx,qGlx)]}
&I(x)>0

x is a proof-schema (a finite series of formuiae, of which
each is either an axiom or an immediate consequence
of two previous ones).

45. x By = Bw(x) & [[(x)]GIx=y
x is a proof of the formula y.

46. Bew(x) = (Ey)yBx
x is a provable formula. [Bew (x) is the only one of the
concepts 1-46 of which it cannot be asserted that it is
recursive.]

The following proposition is an exact expression of a
fact which can be vaguely formulated in this way: every
recursive relation is definable in the system P (interpreted
as to content), regardless of what interpretation is given to
the formulae of P:

Proposition V: To every recursive relation R (x, ... x,)
there corresponds an n-place relation-sign r (with the free
variables®® u, u,, ...u,) such that for every n-tuple of
numbers (x; ... x,) the following hold:

38 The variables uy...uy could be arbitrarily allotted. There is
always, e.g., an r with the free variables 17, 19, 23 . . . etc., for which
(3) and (4) hold.

[186]
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R(x,...x) — Bew [Sb<r 260 i(;">>] ©

R(xy ... x) > Bew [Neg Sb< 2. 2o, ))] ©

We content ourselves here with indicating the proof of
this proposition in outline, since it offers no difficulties of
principle and is somewhat involved.?® We prove the
proposition for all relations R (x,...x,) of the form:
Xy = ¢ (xz...x,)* (where ¢ is a recursive function) and
apply mathematical induction on the degree of ¢. For
functions of the first degree (i.e. constants and the function
x+1) the proposition is trivial. Let ¢ then be of degree m.
It derives from functions of lower degree ¢, ... ¢, by the
operations of substitution or recursive definition. Since, by
the inductive assumption, everything is already proved for
¢y ... ¢ there exist corresponding relation-signs ry ... r,
such that (3) and (4) hold. The processes of definition
whereby ¢ is derived from ¢, ... ¢, (substitution and re-
cursive definition) can all be formally mapped in the system
P. If this is done, we obtain from ry ... r, a new relation-
sign r*!, for which we can readily prove the validity of (3)
and (4) by use of the inductive assumption. A relation-sign
r, assigned in this fashion to a recursive relation,*? will be
called recursive.

We now come to the object of our exercises:

39 Proposition V naturally is based on the fact that for any recursive
relation R, it is decidable, for every n-tuple of numbers, from the
axioms of the system P, whether the relation R holds or not.

40 From this there follows immediately its validity for every recur-
sive relation, since any such relation is equivalent to 0 = ¢ (x1... xa),
where ¢ is recursive.

41 In the precise development of this proof, r is naturally defined,
not by the roundabout route of indicating its content, but by its purely
formal constitution.

42 Which thus, as regards content, expresses the existence of this
relation.
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Let ¢ be any class of formulae. We denote by Flg (c) (set
of consequences of ¢) the smallest set of formulae which
contains all the formulae of ¢ and all axioms, and which
is closed with respect to the relation “immediate conse-
quence of . c is termed w-consistent, if there is no class-
sign a such that:

v

(n) [Sb <a Z(n)) ¢ Flg(c)] & [Neg(vGena)] ¢ Flg(c)

where v is the free variable of the class-sign a.

Every w-consistent system is naturally also consistent.
The converse, however, is not the case, as will be shown
later.

The general result as to the existence of undecidable
propositions reads:

Proposition VI: To every w-consistent recursive class ¢
of formulae there correspond recursive class-signs r, such
that neither » Gen r nor Neg (v Gen r) belongs to Flg (c)
(where v is the free variable of r).

Proof: Let ¢ be any given recursive w-consistent class of
formulae. We define:

Bw.(x)=(m[n=](x) > Ax(nGlx) v (nGlx)ecv
(Ep,9) {0 <p,q<n&Fl(nGlx, pGlx,qGlx)}]

&I(x)>0 ©)
(cf. the analogous concept 44)
xB.y = Bw,(x) & [[(0)]Glx =y ©)
Bew, (x) = (Ey)y B.x 6.1y

(cf. the analogous concepts 45, 46)

The following clearly hold:
(x)[Bew, (x) ~ xeFlg(c)] U]
(x) [Bew (x) — Bew,(x)] ®
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We now define the relation:

R _ 19
Q(x,y) = xB, [Sb (y Z(y))]' (8.1)
Since x B,y [according to (6), (5)] and Sb <y 'zg(y)>

(according to definitions 17, 31) are recursive, so also is
Q(x,y). According to Proposition V and (8) there is
therefore a relation-sign g (with the free variables 17, 19)
such that

x B, [Sb (y 2(1}9)>] — Bew, [Sb (q Z(lx7) Zés):‘ )
x B, [Sb <y Z(l}3>:] — Bew, [Neg Sb (q Z(IJ) Z(ly9)>jl (10)

We put

p =17Geng (11)
(p is a class-sign with the free variable 19)
and
19
- = Sb 12
’ <" Z<p)) 12

(r is a recursive class-sign with the free variable 17).*> Then

19 19
Sb <p Z(p)> = Sb <[1 7 Geng] Z(p))

19
= 17 Gen Sb (qz(p)> (13)
= 17 Gen r**

43 r is derived, in fact, from the recursive relation-sign g on replace-
ment of a variable by a determinate number (p).

44 The operations Gen and Sb are naturally always commutative,
wherever they refer to different variables.
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[because of (11) and (12)] and furthermore:

17 19 17
st <" 7x) Z(p)) =sh (’ Z(x>> (14

[according to (12)]. If now in (9) and (10) we substitute
p for y, we find, in virtue of (13) and (14):

_ ) 17
X B, (17 Gen r) — Bew, |:Sb (r Z(.\’))] (15)

x B, (17 Gen r) - Bew, [Neg Sb (r Z(l\;>:| (16)

Hence:

1. 17 Gen r is not c-provable. For if that were so,
there would (according to 6.1) be an »n such that
n B, (17 Gen r). By (16) it would therefore be the case that:

17
Bew, [Neg Sb (I Z(n))]

while—on the other hand—from the c-provability of

45

17 Gen r there follows also that of Sb|r ¢ would

17
Z(n) )
therefore be inconsistent (and, a fortiori, w-inconsistent).

2. Neg (17 Gen r) is not c-provable. Proof: As shown
above, 17 Gen r is not c-provable, i.e. (according to 6.1) the

following holds: (n) n B, (17 Gen r). Whence it follows, by
(15), that (n) Bew, [Sb (r 2(1"7)>] which together with

Bew, [Neg (17 Gen r)] would conflict with the w-consist-
ency of c.

17 Gen r is therefore undecidable in ¢, so that Proposi-
tion VI is proved.

45 “x is c-provable™ signifies: x g Flg (¢), which, by (7), states the
same as Bew, (x).

[189]
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One can easily convince oneself that the above proof is
constructive,** i.e. that the following is demonstrated in
an intuitionistically unobjectionable way: Given any
recursively defined class ¢ of formulae: If then a formal
decision (in ¢) be given for the (effectively demonstrable)
propositional formula 17 Genr, we can effectively state:

1. A proof for Neg (17 Gen r).

2. For any given n, a proof for Sb| r ), i.e. a formal

17
Z(n)
decision of 17 Gen r would lead to the effective demon-
strability of an w-inconsistency.

We shall call a relation (class) of natural numbers
R (x, ... x,) calculable [entscheidungsdefinit], if there is an
n-place relation-sign r such that (3) and (4) hold (cf. Pro-
position V). In particular, therefore, by Proposition V,
every recursive relation is calculable. Similarly, a relation-
sign will be called calculable, if it be assigned in this manner
to a calculable relation. It is, then, sufficient for the exist-
ence of undecidable propositions, to assume of the class ¢
that it is w-consistent and calculable. For the property of
being calculable carries over from ¢ to x B,y (cf. (5), (6)
and to Q (x, y) (cf. 8.1), and only these are applied in the
above proof. The undecidable proposition has in this case
the form v Gen r, where r is a calculable class-sign (it is
in fact enough that ¢ should be calculable in the system
extended by adding c).

If, instead of w-consistency, mere consistency as such is
assumed for ¢, then there follows, indeed, not the existence
of an undecidable proposition, but rather the existence of
a property (r) for which it is possible neither to provide a
counter-example nor to prove that it holds for all numbers.

45 Since all existential assertions occurring in the proof are based

on Proposition V, which, as can easily be seen, is intuitionistically
unobjectionable.
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For, in proving that 17 Genr is not c-provable, only the
consistency of ¢ is employed (cf. p. 59) and from
Bew, (17 Gen ) it follows, according to (15), that for every

17\ .
number x, Sb (r Z(x)) is c-provable, and hence that

Z(1x7)> is not c¢-provable for any number.

By adding Neg (17 Genr) to ¢, we obtain a consistent
but not w-consistent class of formulae ¢'. ¢’ is consistent,
since otherwise 17 Gen r would be c-provable. ¢’ is not how-

ever w-consistent, since in virtue of Bew, (17 Gen r) and

Neg Sb (r

17 i
(15) we have: (x) Bew, Sb (r Z(x))’ and so a fortiori:

(x) Bew,, Sb (r Zé;), and on the other hand, naturally:
Bew,. [Neg (17 Gen r)].4¢

A special case of Proposition VI is that in which the
class ¢ consists of a finite number of formulae (with or
without those derived therefrom by type-lift). Every finite
class « is naturally recursive. Let a be the largest number
contained in «. Then in this case the following holds for c¢:

xec~(Emnm<x&n=<a&nea &x=mThn]

¢ is therefore recursive. This allows one, for example, to
conclude that even with the help of the axiom of choice (for
all types), or the generalized continuum hypothesis, not all
propositions are decidable, it being assumed that these
hypotheses are w-consistent.

In the proof of Proposition VI the only properties of the
system P employed were the following:

46 Thus the existence of consistent and not w-consistent ¢’s can

n‘aturally be proved only on the assumption that, in general, consistent
¢'s do exist (i.e. that P is consistent).
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1. The class of axioms and the rules of inference (i.e. the
relation “immediate consequence of™") are recursively de-
finable (as soon as the basic signs are replaced in any fashion
by natural numbers).

2. Every recursive relation is definable in the system P (in
the sense of Proposition V).

Hence in every formal system that satisfies assumptions
1 and 2 and is w-consistent, undecidable propositions exist
of the form (x) F (x), where Fis a recursively defined property
of natural numbers, and so too in every extension of such
a system made by adding a recursively definable w-consistent
class of axioms. As can be easily confirmed, the systems
which satisfy assumptions | and 2 include the Zermelo-
Fraenkel and the v. Neumann axiom systems of set theory,*’
and also the axiom system of number theory which con-
sists of the Peano axioms, the operation of recursive defi-
nition [according to schema (2)] and the logical rules.*®
Assumption 1 is in general satisfied by every system whose
rules of inference are the usual ones and whosec axioms (like
those of P) are derived by substitution from a finite number
of schemata.*%

47 The proof of assumption 1 is here even simpler than that for the
system P, since there is only one kind of basic variable (or two for
J. v. Neumann).

48 Cf. Problem I1I in D. Hilbert’s lecture: ‘Probleme der Grundle-
gung der Mathematik’, Math. Ann. 102.

432 The true source of the incompleteness attaching to all formal
systems of mathematics, is to be found—as will be shown in Part 11 of
this essay—in the fact that the formation of ever higher types can be
continued into the transfinite (cf. D. Hilbert, ‘Uber das Unendliche’,
Math. Ann. 95, p. 184), whereas in every formal system at most de-
numerably many types occur. It can be shown, that is. that the
undecidable propositions here presented always become decidable by

the adjunction of suitable higher types (e.g. of type w for the system P).
A similar result also holds for the axiom system of set theory.
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3

From Proposition VI we now obtain further consequences
and for this purpose give the following definition:

A relation (class) is called arithmetical, if it can be
defined solely by means of the concepts +, . [addition and
multiplication, applied to natural numbers]*® and the
logical constants v, , (x), =, where (x) and = are to
relate only to natural numbers.*® The concept of “arith-
metical proposition” is defined in a corresponding way. In
particular the relations ‘“‘greater” and ‘“‘congruent to a
modulus” are arithmetical, since

x>y~ (Ez)[y=x+17]
x=y(modn) ~ (Ez)[x=y+z.nVy=x+z.n]

We now have:

Proposition VII: Every recursive relation is arithmetical.

We prove this proposition in the form: Every relation of
the form xo = ¢ (x; ... x,), where ¢ is recursive, is arith-
metical, and apply mathematical induction on the degree
of ¢. Let ¢ be of degree s (s>1). Then either

Log(xypeox)=p s Opoenxy),
A2 Xy oo X))o (e X))
(where p and all the s have degrees smaller than s) or

2.00,x...x) = Y (x2...%,)
dk+1,x,. .. x)=pulk,d(k;x,... %), x;...%,]
(where , u are of lower degree than s).

49 Here, and in what follows, zero is always included among the
natural numbers.

50 The definiens of such a concept must therefore be constructed
solely by means of the signs stated, variables for natural numbers
x,y...and the signs 0 and 1 (function and set variables must not
occur). (Any other number-variable may naturally occur in the
prefixes in place of x.)

st It is not of course necessary that all x, ... x» should actually
occur in X, [cf. the example in footnote 27].
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In the first case we have:

Xo=¢ (xp.o.x) ~ (Eyy oo V) [R(Xo ¥y v Y)
&S (X x) & &S, (Vi Xy X))

where R and S; are respectively the arithmetical relations
which by the inductive assumption exist, equivalent to
Xo=pWy...vm) and y = y,(xy...x,). In this case,
therefore, xo = ¢ (x, ...x,) is arithmetical.

In the second case we apply the following procedure:
The relation x, = ¢ (x ... x,) can be expressed with the
help of the concept “‘series of numbers” (f)°? as follows:

Xo=¢(x; ... x) ~(EN{fo=¥(x2...x,)
& (k) [k < xy = frwr = 1k, fio X2 .. X)]
&x0=fx.}

If S(,xy...x,) and T(z,x,...x,4,) are respectively
the arithmetical relations—which by the inductive assump-
tion exist—equivalent to

Y=y, x)and z = p(x; ... X,0q),
the following then holds:

Xo= ¢ (xp...x) ~ (EN{SUo, X2 .. x,)
&)k <xy > T(firr, ko Soo X2 ... X,)]
& xo = fi,} an

We now replace the concept “series of numbers” by “pair
of numbers”, by assigning to the number pair n,d the
number series "9 (£ = [n];, g+1)a), Where [n], de-
notes the smallest non-negative residue of n modulo p.

52 f signifies here a variable, whose domain of values consists of
series of natural numbers. fi denotes the k +1-th term of a series
f(fo being the first).
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‘We then have the following:

Lemma 1:If fis any series of natural numbers and & any
natural number, then there exists a pair of natural numbers
n, d, such that £ and f agree in the first k terms.

Proof: Let / be the largest of the numbers k, fo, f; . .. fi— 1.
Let n be so determined that

n=fi(mod(I+@+1)M] for i=0,1...k—1
which is possible, since every two of the numbers 1+ (i+ 1)/!
(i=0,1...k—1) are relatively prime. For a prime num-
ber contained in two of these numbers would also be
contained in the difference (i, —i,) /! and therefore, because
|iy=£| < £ in I!, which is impossible. The number pair
n, ! thus accomplishes what is required.

Since the relation x = [n], is defined by x = n (mod p)
& x<p and is therefore arithmetical, so also is the relation
P (xq, X, . .. x,) defined as follows:

P(xo... %) = (End) {S([nlsss % .. %))
& (k) [k < xy — T([”]l+d(k+2)’ k, [”]l+d(k+l)’
Xy X)) & xp =[] 4 yx, 41

which, according to (17) and Lemma 1, is equivalent to
Xo = ¢ (xy...x,) (we are concerned with the series f in
(17) only in its course up to the x, + I-th term). Thereby
Proposition VI1I is proved.

According to Proposition VII there corresponds to every
problem of the form (x) F(x) (F recursive) an equivalent
arithmetical problem, and since the whole proof of Pro-
position VII can be formalized (for every specific F) within
the system P, this equivalence is provable in P. Hence:

Proposition VIII: In every one of the formal systems®?
referred to in Proposition VI there are undecidable arith-
metical propositions.

3 These are the w-consistent systems derived from P by addition of
a recursively definable class of axioms.
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The same holds (in virtue of the remarks at the end of
Section 3) for the axiom system of set theory and its exten-
sions by w-consistent recursive classes of axioms.

We shall finally demonstrate the following result also:

Proposition IX: In all the formal systems referred to in
Proposition VI*® there are undecidable problems of the
restricted predicate calculus®* (i.e. formulae of the restricted
predicate calculus for which neither universal validity nor
the existence of a counter-example is provable).®®

This is based on

Proposition X: Every problem of the form (x) F(x)
(F recursive) can be reduced to the question of the satisfi-
ability of a formula of the restricted predicate calculus (i.e.
for every recursive F one can give a formula of the restricted
predicate calculus, the satisfiability of which is equivalent
to the validity of (x) F (x)).

We regard the restricted predicate calculus (r.p.c.) as
consisting of those formulae which are constructed out of
the basic signs: , v, (x), =; x, y ... (individual variables)
and F(x), G(x,y), H(x,y,z)... (property and relation
variables)®® where (x) and = may relate only to individuals.
To these signs we add yet a third kind of variables ¢ (x),
¥ (x ), x (xy z) etc. which represent object functions; i.e.

ss Cf. Hilbert-Ackermann, Grundziige der theoretischen Logik. In
the system P, formulae of the restricted predicate calculus are to be
understood as those derived from the formulae of the restricted predi-
cate calculus of PM on replacement of relations by classes of higher
type, as indicated on p. 42.

ssIn my article ‘Die Vollstdndigkeit der Axiome des logischen Funk-
tionenkalkiils’, Monatsh. f. Math. u. Phys. XXXV1I, 2, | have shown of
every formula of the restricted predicate calculus that it is either demon-
strable as universally valid or else that a counter-example exists; but in
virtue of Proposition IX the existence of this counter-example is not
always demonstrable (in the formal systems in question).

s6 D, Hilbert and W. Ackermann, in the work already cited, do not
include the sign = in the restricted predicate calculus. But for every
formula in which the sign = occurs, there exists a formula without

this sign, which is satisfiable simultaneously with the original one (cf.
the article cited in footnote 55).
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¢ (x), ¥ (xy), etc. denote one-valued functions whose
arguments and values are individuals.®” A formula which,
besides the first mentioned signs of the r.p.c., also
contains variables of the third kind, will be called a formula
in the wider sense (i.w.s.).>® The concepts of “satisfiable”
and “universally valid” transfer immediately to formulae
i.w.s. and we have the proposition that for every formula
i.w.s. A we can give an ordinary formula of the r.p.c. B such
that the satisfiability of 4 is equivalent to that of B. We
obtain B from 4, by replacing the variables of the third kind
¢ (x), ¥ (xy)...appearing in 4 by expressions of the form
(1z2)F(zx), 0z2)G(z,xy)..., by eliminating the “des-
criptive” functions on the lines of PM I % 14, and by
logically multiplying®® the resultant formula by an expres-
sion, which states that all the F, G ... substituted for the
¢,y ... are strictly one-valued with respect to the first
empty place.

We now show, that for every problem of the form (x) F (x)
(F recursive) there is an equivalent concerning the satisfi-
ability of a formula i.w.s., from which Proposition X fol-
lows in accordance with what has just been said.

Since F is recursive, there is a recursive function @ (x)
such that F(x) ~ [® (x) = 0], and for @ there is a series
of functions ®,, ®, ... d,, such that , =0, O, (x) = x+1
and for every @, (I < k < n) either

Lo(xpe e X)) [00, x5 ... X)) = @, (x50 . X))
(s X3 v X,) (D [@ (), x5 02 X)
=@, [x, O (X, X5 ... Xp), X500 Xy} (18)
p,q<k

57 And of course the domain of the definition must always be the
whole domain of individuals.

58 Variables of the third kind may therefore occur at all empty
places instead of individual variables, e.g. y = ¢ (x), F(x, ¢ (),
Glg(x, d(), x}etc.

59 1.e. forming the conjunction.
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or

2 (xpe X [@001 o X) = B (@, (x1) - G, DI (19)
r<k,i,<k (forv =1,2...5)

or

3G x) [ (xy e X)) = Oy (@ ... Dy (0))]  (20)
In addition, we form the propositions:

O, (x0) =0&(xy) (@, (x) =, () —>x=y] 2
) [@, (x) = 0] 22

In all the formulae (18), (19), (20) (for k = 2,3,...n)
and in (21), (22), we now replace the functions ®; by the
function variable ¢;, the number 0 by an otherwise absent
individual variable x, and form the conjunction C of all the
formulae so obtained.

The formula (E x,) C then has the required property, i.e.
1. If (x) [® (x) = 0] is the case, then (E x,) C is satisfiable,

since when the functions ®,, ®,,...®, are substi-
tuted for ¢y, ¢5, ... ¢, in (Ex,) C they obviously
yield a correct proposition.

2. If (E x,) C is satisfiable, then (x) [® (x) = 0] is the case.

Proof: Let ¥,, ¥, ... ¥, be the functions presumed to
exist, which yield a correct proposition when substituted
for ¢y, ¢, ... ¢, in (E xo) C. Let its domain of individuals
be 1. In view of the correctness of (E x,) C for all functions
Y¥,, there is an individual a (in /) such that all the formulae
(18) to (22) transform into correct propositions (18') to
(22') on replacement of the ®, by ¥, and of 0 by a. We
now form the smallest sub-class of 7, which contains @ and
is closed with respect to the operation W, (x). This sub-
class (I') has the property that every one of the functions

60 X; (i = 1...5) represents any complex of the variables x, x:
v Xmy €.8. X1 X3 X2.
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W¥,, when applied to elements of I', again yields elements of
I'. For this holds of ¥, in virtue of the definition of /';
and by reason of (18'), (19"), (20’) this property carries over
from V¥, of lower index to those of higher. The functions
derived from W; by restriction to the domain of individuals
I', we shall call ;. For these functions also the formulae
(18) to (22) all hold (on replacement of 0 by a and ®;
by V¥/).

Owing to the correctness of (21) for ¥, and a, we can
map the individuals of I’ in one-to-one correspondence on
the natural numbers, and this in such a manner that a
transforms into 0 and the function ¥,’ into the successor
function ®,. But, by this mapping, all the functions ¥,
transform into the functions ®;, and owing to the correct-
ness of (22) for ¥’, and a, we get (x)[®,(x) = 0] or
(x) [® (x) = 0], which was to be proved.®!

Since the considerations leading to Proposition X (for
every specific F) can also be restated within the system P,
the equivalence between a proposition of the form (x) F (x)
(F recursive) and the satisfiability of the corresponding
formula of the r.p.c. is therefore provable in P, and hence
the undecidability of the one follows from that of the other,
whereby Proposition IX is proved.®?

4
From the conclusions of Section 2 there follows a remark-
able result with regard to a consistency proof of the system

o1 From Proposition X it follows, for example, that the Fermat and
Goldbach problems would be soluble, if one had solved the decision
problem for the r.p.c.

62 Proposition 1X naturally holds also for the axiom system of set
theory and its extensions by recursively definable w-consistent
classes of axioms, since in these systems also there certainly exist
undecidable theorems of the form (x) F(x) (F recursive).
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P (and its extensions), which is expressed in the following
proposition:

Proposition XI: If ¢ be a given recursive, consistent class®?
of formulae, then the propositional formula which states that
¢ is consistent is not ¢-provable; in particular, the consistency
of P is unprovable in P,%* it being assumed that P is con-
sistent (if not, of course, every statement is provable).

The proof (sketched in outline) is as follows: Let ¢ be
any given recursive class of formulae, selected once and for
all for purposes of the following argument (in the simplest
case it may be the null class). For proof of the fact that
17 Gen r is not c-provable,®® only the consistency of ¢ was
made use of, as appears from 1, page 59; i.e.

Wid (c) —» Bew, (17 Gen r) (23)
ie. by (6.1):
Wid (¢) - (x) x B, (17 Genr)

By (13), 17 Genr = Sb <p and hence:

19)
Z(p)
. 19
Wid (¢) — (x) x B, Sb (p Z(P))
i.e. by (8.1):

Wid (c) = (x) Q (x, p) @4

We now establish the following: All the concepts defined
(or assertions proved) in Sections 2°¢ and 4 are also ex-
pressible (or provable) in P. For we have employed through-

63 ¢ is consistent (abbreviated as Wid (¢)) is defined as follows:
Wid (¢) = (E x) [Form (x) & Bew, ()].

64 This follows if ¢ is replaced by the null class of formulae.

65 r naturally depends on ¢ (just as p does).

66 From the definition of *‘recursive” on p. 46 up to the proof of
Proposition VI inclusive.
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out only the normal methods of definition and proof
accepted in classical mathematics, as formalized in the
system P. In particular ¢ (like any recursive class) is de-
finable in P. Let w be the propositional formula expressing
Wid (c) in P. The relation Q (x, y) is expressed, in accord-
ance with (8.]), (9) and (10), by the relation-sign g, and

Q (x, p), therefore, by r| since by (12) r = Sb <q Z(AIDQ))]

and the proposition (x) Q (x, p) by 17 Gen r.

In virtue of (24) w Imp (17 Gen r) is therefore provable
in P®7 (and a fortiori c-provable). Now if w were c-provable,
17 Gen r would also be c-provable and hence it would
follow, by (23), that ¢ is not consistent.

It may be noted that this proof is also constructive, i.e.
it permits, if a proof from c is produced for w, the effective
derivation from ¢ of a contradiction. The whole proof of
Proposition XI can also be carried over word for word to
the axiom-system of set theory M, and to that of classical
mathematics A,°® and here too it yields the result that there
is no consistency proof for M or for A which could be
formalized in M or A respectively, it being assumed that M
and A are consistent. It must be expressly noted that
Proposition XI (and the corresponding results for M and A)
represent no contradiction of the formalistic standpoint of
Hilbert. For this standpoint presupposes only the existence
of a consistency proof effected by finite means, and there
might conceivably be finite proofs which cannot be stated
in P (or in M or in A).

Since, for every consistent class ¢, w is not c-provable,
there will always be propositions which are undecidable

67 That the correctness of w Imp (17 Gen r) can be concluded from
(23), is simply based on the fact that—as was remarked at the outset—
the undecidable proposition 17 Gen r asserts its own unprovability.

68 Cf. J. v. Neumann, ‘Zur Hilbertschen Beweistheorie’. Math.
Zeitschr, 26, 1927.
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(from ¢), namely w, so long as Neg () is not c-provable; in
other words, one can replace the assumption of w-consis-
tency in Proposition VI by the following: The statement
“c is inconsistent™ is not c-provable. (Note that there are
consistent ¢'s for which this statement is ¢-provable.)

Throughout this work we have virtually confined our-
selves to the system P, and have merely indicated the appli-
cations to other systems. The results will be stated and
proved in fuller generality in a forthcoming sequel. There
too, the mere outline proof we have given of Proposition XI
will be presented in detail.

(Received : 17 . xi. 1930.)
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